CASTS TALKS

TIMS Taipei Number Theory Seminar (2018)

On a problem of Sidon

Prof. Wentang Kuo

2018 - 08 - 24 (Fri.) 10:30 - 11:30 103, Mathematics Research Center Building (ori. New Math. Bldg.)

Let (omega) be a sequence of positive integers. Given a positive integer (n), we define $[r n(omega) = | \{ (a,b) in mathbb \{ N \} times \}$ mathbb{N}colon a,b in omega, a+b = n, 0 <a0) for all (n) sufficiently large and, for all (epsilon > 0), [lim {n rightarrow infty} frac{r n(omega)} {n^{epsilon}} = 0.] P. ErdH{o}s proved this conjecture by showing the existence of a sequence (omega) of positive integers such that [log n ll r n(omega) ll log n.] In this talk, we prove an analogue of this conjecture in (mathbb $\{F\}$ q[T]), where $(mathbb{F} q)$ is a finite field of (q) elements. More precisely, let (omega) be a sequence in (mathbb $\{F\}$ q[T]). Given a polynomial (hinmathbb{F} q[T]), we define [begin{split} r h(omega) & = $\{(f,g) \text{ in mathbb} \{F\} \in q[T] \text{ times mathbb} \{F\} \in q[T] : f,gin omega, f+g$ =h, & deg f, deg g leq deg h, fne g|. end{split}] We show that there exists a sequence (omega) of polynomials in (mathbb $\{F\}$ q [T]) such that [deg h ll r h(omega) ll deg h] for (deg h) sufficiently large. This is a joint work with Shuntaro Yamagishi.

