CASTS TALKS

The 7th East Asia Number Theory Conference

MOD p local-global compatibility for $GL_n(Q_p)$ in the ordinary case

Dr. Chol Park

2018 - 02 - 06 (Tue.) 15:00 - 15:50

101, Mathematics Research Center Building (ori. New Math. Bldg.)

Let *K* be a finite extension of Q_p . It is believed that one can attach a smooth F_p -representation of $GL_n(K)$ (or a packet of such representations) to a continuous Galois representation $Gal(Q_p/K) \rightarrow GL_n(F_p)$ in a natural way, that is called modp Langlands program for $GL_n(K)$.

This conjecture is known only for $GL_2(Q_p)$: one of the main difficulties is that there is no classification of such smooth representations of $GL_n(K)$ unless $K = Q_p$ and n = 2.

However, for a given continuous Galois representation ρ_0 : Gal(Q_p / Q_p) \rightarrow GL_n (F_p), one can define a smooth F_p -representation Π_0 of GL_n (Q_p) by a space of mod p automorphic forms on a compact unitary group, which is believed to be a candidate on the automorphic side corresponding to ρ_0 for modp Langlands correspondence in the spirit of Emerton.

The structure of Π_0 is very mysterious as a representation of GLn (Q_p), but it is conjectured that Π_0 determine ρ_0 .

In this talk, we discuss that Π_0 determines ρ_0 , provided that ρ_0 is ordinary and generic. More precisely, we prove that the tamely ramified part of ρ_0 is determined by the Serre weights a ttached to ρ_0 , and the wildly ramified part of ρ_0 is obtained in terms of refined Hecke actions on Π_0 .

This is a joint work with Zicheng Qian.

