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The Navier-Stokes Equations

The Navier-Stokes (N-S) equations in primitive variables are
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The Navier-Stokes Equations

The Navier-Stokes (N-S) equations in primitive variables are
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The Navier-Stokes Equations
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Where the non dimensional quantities ¢, p, u, v are
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y-directions. Re = UL /v is the Reynolds number, v being
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The Streamfunction-Vorticity and
Streamfunction-Velocity Formulations

Introducing streamfunction ) and vorticity w as u = g—f
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V=W =
the above N- S can be rewrltten as:
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This is known as Streamfunction-Vorticity (y-w) formulation.
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The pure Streamfunction Formulation
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where the non dimensional quantities ¢, ¥, u, v are
respectively time, streamfunction, and velocities along the
nlors z- & y-directions. Re = UL/v is the Reynolds number, v
Nevier Stakes being the kinematic viscosity. The -v formulation can
o easily be written in pure Streamfunction form as
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Advantages

The main advantages of this formulation are:

m Avoids difficulties associated with primitive variables
u,v,p.

m Avoids difficulties associated with vorticity boundary
conditions.

m lterations involve only the single variable ).
m Computationally easier to implement.
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The steady-state equation
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Consider a rectangular domain [ay, as] % [by, by] in the
zy-plane. We divide the interval [a;, a,] into m sub-intervals,
not necessarily of equal lengths, by the points
A1 = Xy L1, Ty T3y weeey Ty 1, Ty, = Qg AN similarly [by, by]
into n subintervals by the points
b1 = Y0, Y1:Y2, Y35 -+ Yn—15Yn = bo.
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Discretization of the steady-state equation [6]

The finite difference approximation of (8) is given by
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The unsteady biharmonic equation

the transient biharmonic form of N-S equation may be

written as
4 4 4 3 3
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ox 0x” 0y y oy \ ox 0x0y
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Discretization of the unsteady equation [7]

Making use of (13), equation (12) can be discretized as

<p5;1¢ + 2532355 + qégw — Re |vVu — uV3v

6p(ry —x 12
+ 71)( ! b)éiv ~ =P 0,V
:cfxb IL'f.be (13)
24p(xy — x 6 — 12
L 2 i o), Galyy yb)5§u+ <5
xryxy YrYy Yrp

24q(y; — )\
— 7; 5 I = Red; (V2¢>
Yryp



Discretization

pro Using forward differences for the time derivative and making
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Discretization

This formulation is O(z%, zj, At). Here , the superscript n
and n + 1 represent the n— and (n + 1) time levels,
respectively. The second order time discretization is
obtained by using Crank-Nicolson scheme.
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Laminar flow past a flat plate in uniform flow
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Figure: Configuration of the flow past a flat plate in uniform flow
problem ([10, 11, 12]).
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The Boundary Conditions

Inlet BC

At the inletu = Uy, v=0.
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The Boundary Conditions

Inlet BC
At the inletu = Uy, v=0.

Outlet BC
At the outlet, ?;f + Uogi = 0 with ¢ standing for u, v or 1.

Surface and other BC

On the surface of the plate, u = v = 0. At the other
boundaries of the computational domain gu =0andv = 0.
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Figure: A typical 301 x 101 grid (top) and Close up view of the grid
near the surface of the plate (bottom).
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Steady state streamlines

(c) (d)

Figure: Steady-state streamlines for the flow past flat plate in a

uniform flow for (a) Re = 5, (b) Re = 10, (c) Re = 20 and (d)
Re =20 (exp., [12]).



Flow evolution for Re = 40.
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Flgure: Streamlines for Re = 40 at (a) t = 5, Flgure: Streamlines for Re = 40 at (a) t = 200,
(b) T = 10, (c) t = 50 and (d) t = 100. (b) T = 210, (c) t = 220 and (d) t = 240.
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Periodic vortex shedding for Re = 40 and 100

o BUN ‘
imu/ 9\ (9 “-;) o

Figure: For Re = 40: (a) the streamlines, (b) the ~ FIQUI€: For Re = 100: (a) the streamlines, (b)
vorticity contours and (c) the streaklines behind the flat  the vorticity contours and (c) the streaklines behind the
plate depicting vortex shedding. flat plate depicting vortex shedding.

Click to see vortex shedding for Re = 100
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Figure: History of lift coefficients for (a) Re = 40 and (b) Re = 100.
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Periodic flow study
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The sisady.stae Figure: (a) Spectral density of the lift coefficient and (b) Phase
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plate for Re = 40 and Re = 200 in the time interval [300, 400].
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A look at the critical Reynolds number
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Figure: For Re = 32: (a) the streamlines and (b) the vorticity
contours at the onset of symmetry breaking at time ¢ = 650, and
mamenom (C) the streaklines behind the flat plate depicting vortex shedding.
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eicevia Figure: (a) Spectral density of the lift coefficient and (b) Phase
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I'ne schematic diagram: Laminar flow past a
flat plate in uniformly accelerated flow
(8, 10, 11])

Y =yr =25l
20, v=0
u=uy+t o [”+uud =0
:iu 5 |¢I ”)‘,—u[,‘)"fn
v=y o L = x 7-11‘,) =0
g =0v=0
v =75 Y =y- — 2.5l
301

Figure: Configuration of the flow past a flat plate in uniformly
accelerated flow problem.

A note on Non-dimensionalization: u = v + at,

> aL:
T v
t"=L, 2" =Zandu" = “L wil lead to u" = ug + t".

1
e L L
characteristic time-scale T' = <a> Re =



Flow evolution for accelerated flat plate for
Re = 400.
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Figure: Streamlines for Re = 400 at (@) t = 1, Figure: Streaklines for Re = 400 at (a) t = 1,
«L\:;':’\:'cf::\f.np‘:;‘n: (b)t=2,(c)t =3(d)t=4and(e)t = 5. (b)t=2,(c)t=3(d)t=4and(e)t=5.
flow

Results



PY=v
computation
of flow past
sharp edges

in uniform
and

accelerated
flow

Jiten C Kalita

The Navier-Stokes
Equations

The 1)-v form of
the transient
Navier- Stokes
Equations

The steady-state
scheme

The unsteady
scheme

Laminar flow past a
flat plate in uniform
1l

Results

Streakline evolution for accelerated flat plate for
Re = 400 and 500.

Click to see vortex shedding for Re = 400
Click to see vortex shedding for Re = 500
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Flow past a wedge-like sharp edge in
accelerated flow

Figure: Experimental set-up for starting vortex flow visualization
by Pullin and Perry ([13]).



P-v
computation
of flow past
sharp edges

in uniform

and
accelerated

flow

Jiten C Kalita

Outline

Introduction

The Navier-Stokes
Equations

The 1)-v form of
the transient
Navier-Stokes
Equations

The scheme
used

The steady-state
scheme

The unsteady
scheme

Numerical
test cases

Laminar flow past a
flat plate in uniform
flow

Results

Flow past a wedge-like sharp edge in
accelerated flow
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Figure: Configuration of the flow past a wedge in accelerated flow
problem ([8, 9, 13, 14]).
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Figure: Streamlines for accelerated flow past a 60° wedge at time
t = 0.8 for Re = 1560 (left, m=0), Re = 6621 (middle, m=0.45) and
Re = 6873 (right, m=0.88).
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Starting vortex evolution for flow past a wedge for Re = 6873.

T o1 3

Flg Ure: streaklines for Re

t =2.8,(b)t =4 and(d) t = 5 (Experimental [13]).

T

= 6873 at ES}

. . (o
Flgure. Streaklines for Re = 6873 at Ea;
t =2.8,(b)t =4and(d)t = 5 (Present).



Starting vortex evolution for flow past a wedge for Re = 6873.
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The structure of the starting vortex

m The initial stage: The vortex sheet shedded from the
edge rolls up into a spiral shape.
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The structure of the starting vortex

m The initial stage: The vortex sheet shedded from the
edge rolls up into a spiral shape.

m The second stage: Generation of small vortices.
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The structure of the starting vortex

m The initial stage: The vortex sheet shedded from the
edge rolls up into a spiral shape.

m The second stage: Generation of small vortices.
m The final stage: The three fold structure.
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The second stage: Generation of small vortices

m  The outermost part of the starting vortex becomes wavy due to the instability of the shear layer.
m Afterwards a part of the outermost vortex sheet breaks and rolls up into small vortices.

m The small vortices are spaced almost uniformly, and their centers are located along the spiral curve of
the large starting vortex, thus they are a part of this large starting vortex. Each small vortex has rolled
up into a spiral shape, with an apparently very thin shear layer.

(a) (b)

Figure: (a) The second stage: Comparison of experimental result
of Lian and Huan [14] at time ¢ = 2.09 and our numerical
simulation for Re = 6873.

Click here to visualize shear layer instability
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Existence of coherent structure

Figure: (a) Streaklines and (b) vorticity contours for Re
t = 14.08.

(b)

= 6873 at
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Existence of coherent structure

The Q criterion [15]: The eigenvalue analysis of the
perturbed velocity field gives A = +1/Q, where

o (2 C Py oty
~ \ 0zoy ?aif

It follows that in the regions of the fluid where Q < 0, the
distance between two particles embedded in the original
velocity field will not diverge as a function of time.
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i Summarizing the whole phenomenon
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