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Ocean waves in deep 
water   

(Typhoon Morakot) 
	
  



Swells at California coast  



Study ocean 
waves in 

laboratory 



Tsunami experiment at OSU 
Network	
  for	
  Earthquake	
  Engineering	
  Simula5on	
  (NEES)	
  



•  What are ocean waves? 
 Ocean waves are perturbations of sea surface from an 
equilibrium state 

•  Equilibrium state refers to a “steady” and  smooth sea 
•  Perturbations mean disturbances of that state 

•  There are several sources of ocean waves 
•  Energy transferred to ocean surface by wind (capillary waves; wind 

waves) 
•  Seismic activity, landslides, volcanism (tsunamis) 
•  Gravitational attraction of the moon and sun acting on the rotating 

earth (tides; internal waves; planetary waves) 
•  Different restoring forces for different waves 

•  Capillary waves: surface tension and gravity  
•  Wind waves: gravity 
•  Tsunamis: gravity and earth rotation 
•  Internal waves: density stratification and gravity 
•  Tides: gravity and earth rotation 
•  Planetary waves: gravity and earth rotation 

Ocean Waves 



Ocean wave energy distribution 
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Free surface displacement at a fixed location

η(t) = (Ai cosωit + Bi sinωit)
i=1

∞

∑ = Ai cos(ωit +θi )
i=1

∞

∑

Typical records of free  
Surface fluctuations 
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A sea state can be viewed as the  
superposition of simple harmonic waves  
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Basic wave form:
η(t) = Acosωt
η(x) = Acoskx 

• 	
  Wave crest 
•  Wave trough 
•  Wave amplitude 
•  Wave height  
•  Wavelength; Wave period 
•  Wave number; Wave frequency 
• 	
  Wave steepness 



Progressive waves and Standing waves 

η(x ,t ) = Acos(kx )cos(ωt )

The wave form of progressive waves moves 
with a constant speed in a prescribed direction. 
The speed of wave propagation is also called 
celerity or phase speed. 
The wave form of the progressive waves will 
appear as stationary to an observer moving 
with the same speed as the phase speed. 

The wave form of standing waves does 
not propagate in space. The water surface  
oscillates vertically between fixed positive 
and negative elevations.  There are nodes 
(zero elevation fluctuation) and antinodes 
(maximum elevation fluctuation.). 	
  

η(x ,t ) = Acos(kx −ωt )

c =ω / k = celerity



Wave group  

Superposition of 
progressive waves 
with slightly 
different wave 
numbers and wave 
frequencies.  

η(x ,t ) = A{cos[kx −ωt ]+ cos[(k +Δk )x − (ω +Δω)t ]}

= B[(Δk )x − (Δω)t ]cos(kx −ωt )+C [(Δk )x − (Δω)t ]sin(kx −ωt )

C
g

= Δω / Δk = group velocity



Mathematical formulation of 2D small amplitude wave problem 

By observation: 
Since             is defined, we only need to solve for         ,                 
We only need two boundary conditions in          . The third BC 
determines the (DISPERSION) relationship between:  
	
  	
  



Linear wave theory: problem & solution 
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Progressive waves in a constant depth – Phase velocity 

Dispersion relation for small amplitude waves
ω 2 = gk tanh kh

Phase velocity (wave celerity)

c =
ω
k

=
gh
kh

tanh kh

Dispersive wave syatem : c(ω) or c(k)

[ ]

Free surface displacement
( , ) cos( )

           cos ( ) ;

Phase velocity (wave celerity)

x t A kx t
A k x ct

Lc
k T

η ω

ω

= −

= −

= =



Taylor series of tanh kh 
For small kh, the Taylor series of tanh kh is

tanh kh = kh - 1
3

(kh)3 +O((kh)5).

The dispersion relationship can be expaned as

ω 2 = gktanh kh = k 2  (gh)[1- 1
3

(kh)2 +O((kh)4 )]

Phase velocity (wave celerity) can be approximated as 

c =
ω
k

= gh[1− 1
6

(kh)2 +O((kh)4 )]



Different wave systems at two limits 
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Fluid Particle Velocity 
and Particle trajectories 

Free surface displacement for 
a progressive wave train over a 
constant water depth
η(x,t) = Acos(kx −ωt)

Horizontal and vertical velocity components are

u(x, z,t) =
gkA
ω

cosh k(z + h)
cosh kh

cos(kx −ωt);

w(x, z,t) =
gkA
ω

sinh k(z + h)
cosh kh

sin(kx −ωt)



Fluid Particle Velocity and Particle trajectories 
	
  

The instantaneous position of a water particle 
can be denoted as (x1 +ζ, z1 +ξ ). In other word, 
the water particle is moving in an 
orbit around (x1, z1). The position of the particle 
can be expressed as 
x =
x0 +

uL
t0

t

∫ (x0, t ')dt ',

Since at any given time, t, the Lagrangian velocity 
is the same as the Eulerian velocity 

 uL (x0, t) =
u(x, t) =

u x0 +
uL

t0

t

∫ (x0, t ')dt ', t
"

#
$$

%

&
''

≈
u x1, t( ).

Thus, 

ζ = x − x1 = −A coshk(z1 + h)
sinhkh

sin(kx1 −ωt)

ξ = z− z1 = A sinhk(z1 + h)
sinhkh

cos(kx1 −ωt)

and

ζ
C
"

#
$

%

&
'

2

+
ξ
D
"

#
$

%

&
'

2

=1 === an ellipse

where

C =  A coshk(z1 + h)
sinhkh

, D = A sinhk(z1 + h)
sinhkh

In deep water kh >>1
C =  Aexp(kz1), D = Aexp(kz1)
In shallow water kh <<1

C =
A
kh

, D = A 1+
z1

h
"

#
$

%

&
'



Water particle path 
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Fluid Particle Velocities in 
shallow and deep water limits  

Horizontal and vertical velocities bec

( , , ) cos

ome

( );

( , , ) 0

gkAu x z t kx t

w x z t

ω
ω

= −

=

Horizontal and vertical velocities b

( , , ) exp( )cos( );

( , , ) exp( )sin(

ec

)

ome
gkAu x z t kz kx t

gkAw x z t kz kx t

ω
ω

ω
ω

= −

= −

h / L >1/ 2

h / L <1/ 20
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cosh

Hori

( )( , , ) sin( );
cosh

sinh ( )( , , ) cos( )

zontal and vertical 
acceleration components ar

cos

e

h

x

z

u k z hx z t gkA kx t
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w k z hx z t gkA kx t
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α ω

α ω

∂ +
= = −
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∂
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Pressure field 

Hydrostatic pressure:
Ps = −ρgz
Dynamic pressure:

Pd = ρgA cosh k(z + h)
cosh kh

cos(kx −ωt)

Total pressure 
P = Ps + Pd

For shallow water waves, 
the total pressure becomes
P = −ρg(z +η)



Wave energy in small amplitude progressive wave 
 η(x,t) = Acos(kx −ωt)



Energy flux across a water column 

	
  z 

x 



Characteristics of wave energy flux 



 Surf beats and Group velocity 

η(x ,t ) = A{cos[kx −ωt ]+ cos[(k +Δk )x − (ω +Δω)t ]}

= B[(Δk )x − (Δω)t ]cos(kx −ωt )+C [(Δk )x − (Δω)t ]sin(kx −ωt )

C
g

= Δω / Δk = group velocity ; c =ω / k = phase veloscty

Superimposing two small amplitude waves with same amplitude, but  
slightly different wave number and frequency results in surf beats 



Group velocity and phase velocity 
C

g
= Δω / Δk = group velocity ; c =ω / k = phase veloscty

For simple harmonic wave, Δω and Δk approach zero
Group velocity = ∂ω / ∂k



Frequency dispersion effects 
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Characteristics of shallow water waves  
Free surface displacement
η(x,t) = Acos(kx −ωt)

Dispersion relationship
ω 2 = (gh)k 2

Phase velocity

c = gh

Horizontal and vertical velocities

u(x, z,t) =
gkA
ω

cos(kx −ωt) =
gk
ω
η =

η
h

c;

w(x, z,t) = 0

The total pressure 
P = −ρg(z −η)

Conservation of mass
∂η
∂t

+
∂
∂x

uh( ) = 0.

Conservation of momentum
∂u
∂t

= −g ∂η
∂x

These equations can be combined as 

 ∂
2u
∂t 2

−
∂2

∂x2
ghu( ) = 0.

If h = constant, 
∂2u
∂t 2

− c2 ∂
2u
∂x2

= 0.

∂2

∂t 2
∝ (−ω 2 ); ∂2

∂x2
∝ (−k 2 )

$

%
&

'

(
)



Limitations on the linear theory 

u∂u /∂x
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x=0

=
kA

tanhkh
<<1For all kh: 

For kh = O(1):    kA << 1  
 
For kh << 1:       A/h << 1 
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Wave transformations – effects of bathymetry  

•  Wave shoaling 
•  Wave breaking 
•  Wave reflection 
•  Wave refraction 
•  Wave diffraction 



Wave shoaling and breaking 



Wave refraction 

Wave changes direction as water  
depth changes  

Long crest waves refract 
over a submerged shoal 



Wave diffraction by  
An offshore  breakwater  

Wave diffraction by  
a pair of  breakwaters  



Wave shoaling in shallow waters 



Wave shoaling 



Mild slope assumption 



Wave shoaling over slowly varying depth 



Shoaling effects 

0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1
0.04
0.05

0.07

0.1

0.2

0.3

0.5

0.7

1

1.5

h=L 0

h
L

L
L 0

;
c
c0

A
A 0



Constancy of wave period 
Wave	
  period	
  is	
  independent	
  of	
  depth	
  

(proof	
  by	
  contradic/on)	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  



f (t) = cosωt; f 2 (t) =
1
2

cos2ωt +1[ ]

Effects of nonlinearity  
•  Quadratic nonlinearity generates  higher and lower 

harmonics 
•  Wave crests become higher and wave trough   become flatter 

	
  



Effects of nonlinearity 

c = gh → c = g(η + h)
This is also called amplitude dispersion

•  The phase velocity (wave celerity) 
depends on wave amplitude (wave 
heights)	
  

•  The wave crest propagates fastest. Wave 
front becomes steep and the wave back 
gets stretched. The surface takes a saw-
tooth shape. 	
  

•  Surface profile becomes “unstable” and 
wave breaking occurs 
	
  



Wave breaking in shallow water 



Breaking waves 
Spilling breakers: wave crests spill forward, creating foam and turbulent water, as wave 
fronts travel across a gently-sloped beach 

Plunging breakers: wave crests form spectacular open curl; crests fall forward with 
considerable force, dissipating energy in a well-defined area on a moderately-sloped beach 

Surging breakers: long, relatively low waves whose front faces and crests remain relatively 
unbroken as waves slide up and down a steeply-sloped beach 



•  Associated with very steep beaches 
 
•  Wave starts as a plunging, then the 
wave catches up with the crest, and 
the breaker surges up the beach face 
as a wall of water (with the wave crest 
and base traveling at the same speed) 

• Results in a quickly rising and 
falling water level on the beach face 



• 	
  Typical “surfer” waves 

•  Associated with steeper beaches 

•  Waves break very quickly and with 
substantial force 

•  Wave energy is released suddenly as the 
crest curls and then descends violently 



• 	
  Most common breaking waves 

•  Associated with a moderate 
beach gradient  (1:15 to 1:30 
slope) 

•  Waves break slowly as they 
approach the shore 

•  The wave energy is gradually 
released over time and the beach 



Surf similarity parameter: Iribarren number 



Empirical formulae 



Surf zone and swash zone  
Swash zone   Shoaling zone  Surf zone  

•  In the surf zone wave breaking dominates 
and turbulence is significant;  

•  In the swash zone the beach face is dry and 
wet alternatively; 

•  Bottom friction effects are important in both 
zones; 

•  Significant sediment transport occurs in these 
regions. 



Wave refraction 
Refraction: change of wave propagation direction due to the depth variations  
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Some important properties 



Wave refraction 

Furthermore

k2 =
∂S
∂x
"
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⇐  Eikonal equation   and ∇×

k = 0 or

∂k cosθ
∂y

−
∂k sinθ
∂x

= 0

For a given bathemetry h(x) and wave frequency ω, one can find the value of 
the wave number from the dispersion relation
ω 2= gk tanhkh
The equation above can be used to solve the θ. This is a nonlinear equation.

In general the free surface profile of  simple harmonic waves can be 
expressed as  η(x, t) = AcosS(x, t), where the phase function S(x, t) 
has the following important properties
∂S
∂t

= −ω, ∇S =

k.

∂

k
∂t

+∇ω = 0. ⇐  Conservation of number of waves 



Conservation of Energy  
E =

1
2
ρgA2,  wave energy intensity averaged over one wave period

E

Cg =

1
2
ρgA2 dω

dk


k
k

,  wave energy flux averaged over one wave period.

Conservation of energy averaged over one wave period

∇• E

Cg( ) = 0.

or 
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This is a linear PDE for A2.



Determination of refraction pattern: ray tracing 
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If h(x),  then ∂/∂y = 0.
∂k sinθ
∂x

= 0 ⇒ sinθ
c

= constant 



Wave ray tracing 
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Waves over a submarine ridge	
  



wave	
  trapping	
  



Waves	
  over	
  a	
  submarine	
  trough	
  



Direc9onal	
  spreading	
  caused	
  by	
  refrac9on	
  



q 	
  Wave energy concentrates on  
     headlands 
q  Wave energy spreads out in bays 

Refraction 

Depth contours 



Summary on the wave ray approach 

•  Provides a very good visualization on the wave 
propagation pattern 

•  The method breaks when rays cross each other (ray 
focusing) or tangential to a common curve (caustics) 

•  Can not deal with reflection and diffraction 
– Wave amplitude must vary slowly 
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