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I am privileged to be a friend of Prof. Jaw-Yen Yang for the 
past 26 years beginning in 1990 when I was a visiting 
Professor to the Institute of Applied Mechanics, NTU. 
As a new comer to CFD I gave a graduate course on 
the theory and computation of supersonic flow, 
exploring my New Lagrangian Coordinate method. 
With his sharp scientific mind, J Y immediately 
extended the method and we completed 3 joint papers 
in a short time.

Since then I have generalized the method to “Unified 
Coordinates”, mostly done during 2005-6 when I was 
invited by Prof CC Chang  to work at the Academia 
Sinica. Prof. K Xu and I have since published a 
monograph in 2012 to summarize its achievements.





• Science Press



In memory of Prof. Yang, it is fitting 
to give a brief and up-to-date report 
on the achievements of the 
Unified Coordinate method in CFD.
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Eulerian coordinates (mesh) are fixed in space
Lagrangian coordinates (mesh) move with fluid

Are they equivalent theoretically?

“Yes” for 1-D flow (DH Wagner, J. Diff. Eq., 64,                       
118-136, 1987)

“No” for 2- and 3-D flow (Hui, Li and Li, J. Comput
Phys., 153, 596-637, 1999)

Two  coordinate systems 

for describing fluid motion have existed:

1.  Role of Coordinates in CFD



Computationally, 

they are not equivalent, even for 1-D flow



In general, for 2-D and 3-D Flow

Eulerian method is relatively simple, because the Euler 
equations of gas dynamics can be written in conservation 
PDE form, which is the basis for shock-capturing methods, 
but 

(a) it smears contacts badly, and

(b) it needs generating a body-fitted mesh

Lagrangian method resolves contacts sharply, but

(a) the gas dynamics equations could not be
written in conservation PDE form, and

(b) it breaks down due to cell deformation.



2.  The Unified Corrdinates (λ,ξ,η,ζ)
are given by the transformation from Eulerian (t, x, y, z)

We get

So (ξ,η,ζ), and hence the computational mesh, move with 
arbitrary velocity -- the mesh velocity.
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Compatibility Conditions
(only nine of them are independent)

Time evolution

(Geometric conservation laws)

Free divergence constraints



Special Cases: 
Eulerian       Q = 0
Lagrangian  Q = q, q being fluid velocity

In the general case, we have a unified (Euler-
Lagrangian) coordinate system with 3 degrees of 
freedom: U, V and W can be chosen freely.



• It is cruicial that the transformation be written in differential form
so that the mesh velocity (U, V, W) can be chosen freely. 

• Most people seek the transformation in finite form, e.g.
• x = F (t, ξ, η, ζ)
• y = G (t, ξ, η, ζ)
• z = H (t, ξ, η, ζ)
• Then it is impossible to choose the mesh velocity freely
• and to write down these transformation functions. 

• For example, if we choose the mesh velocity to be the fluid 
velocity, ie Lagrangian coordinates, then it is impossible to write 
down the transformation functions F, G and H. They are part of 
the solution: the fluid trajectories, which are of course to be 
determined by the unknown flow as well as the boundary and 
initial conditions.



• The beauty of the differential 
transformation is that you can freely 
choose the mesh velocity without 
working out the finite transformation 
functions, whose existence is 
guaranteed by the compatibility 
conditions; yet the governing 
equations can be written in closed 
conservation PDE form.



One way to determine the mesh velocity is:

For 1-D choose the coordinate as a material one
plus adaptive Godunov scheme (Lepage &

Hui, JCP, 1995)

For 2-D choose one coordinate as a material one
plus mesh-orthogonality preserving

For 3-D        choose two coordinates as material ones
plus mesh-skewness preserving

In this way, UC resolves contacts  sharply without mesh tangling.

(There are other ways to choose the mesh velocity, see $ 7)  
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3.  One-Dimensional Flow
It is shown that 

UC (Lagrangian coordinate + 

shock-adaptive Godunov scheme)

is superior to Lagrangian system   

which, in turn, is superior to the    

Eulerian system

(WH Hui and S Kudriakov, JCP, 2008)



Example 1. A Riemann Problem (Godunov-MUSCL)

UC (Lagrangian + Adaptive Godunov scheme)



UC can cure all known defects of Eulerian and 
Lagrangian shock-capturing methods:

contact smearing
slow moving shocks
sonic-point glitch 
wall-overheating*
start-up errors*
low-density flow* 
strong rarefaction waves*
(*also shared in Lagrangian Computation)

UC is superior to Lagrangian and Eulerian system

and is completely satisfactory.

The same holds for 2-D supersonic flow: the 

algorithm is the same using UC.



4.  Multi-Dimensional Flow

For simplicity, we consider 2-D flow
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Eq. (E) is: (a) in conservation form, 
(b) hyperbolic in t

2-D Gas Dynamic Equations
In Eulerian Coordinates



Transforming to the unified coordinates, (E) become
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With J = AM – BL,    X = (u - U)M – (v - V)L and    Y = (v – V)A – (u – U)B.

(U)

Eq (U) is: (a) closed system in conservation form, 

(b) hyperbolic in λ, except in Lagrangian         

when U = u and V = v



Remarks

Consequences of having a closed system of
Governing equations in conservation form are:

(a) Effects of moving mesh on the flow are fully 
accounted for;

(b) The system can by solved as easily as the
Eulerian one.



5.   Lagrangian Case 

For U = u and V = v, we get

0
















GFE (L)

where























































































































v
u

uBvAp
pA
pB

G

v
u

vLuMp
pL

pM

F

M
L
B
A
Je
Jv
Ju
J

E

0
0

)(

0

   , 

0
0

)(

0

   , 










Remarks

(1) The gas dynamics equations in Lagrangian 
coordinates are written in conservation form for 
the first time. (WH Hui, et al, J. Comput. Phys., 153, 1999)

(2) Lagrangian GD equation is only weakly hyperbolic: 
all eigenvalues are real, but there is no complete set 
of linearly independent eigenvectors. This is also 
true for 3-D case. Hence, Lagrangian GD is not 
equivalent to Eulerian GD.

B. Despres & C. Mazeran, (Arch. Rational Mech. Anal.,178, 2005)
reached same conclusions.



6. Automatic Mesh Generation



Example 2.   Steady subsonic flow
M = 0.8 past a NACA 0012 airfoil

(Time-marching,  WH Hui & JJ Hu)











This resembles the flow in the wind tunnel—
numerical wind tunnel
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Example 3 
Two-Fluids Flow past a NACA 0012 airfoil

M = 2.2 AoA = 8 degrees   (Hui, Hu, Shyue)









Example 4. Supersonic flow past a pitching
oscillating diamond-shape airfoil

( GP Zhao & WH Hui)

3M
)

t sin0



Unsteady pressure distribution



7. Aerodynamics of  
Freely Falling Leaves

(C Jin and K Xu)

(another way to choose the mesh velocity)





falling leaves with fluttering and 
tumbling motion







Mesh moves with the body; this specifies 
the mesh velocity (U, V) at all time.

All fluid-solid interaction problems can be 
tackled this way.





• In this example you can easily choose 
the mesh to be fixed with the plate, but 
it is impossible to write down the 
finite transformation functions: they 
are part of the flow solution which is 
unknown.

• On the other hand, if you choose the 
transformation functions F, G and H 
first, then at the same time you have 
also completely determined the mesh 
velocity, which may not be what you 
want.



8. Future Research Directions

The Unified Coordinate Method has provided 
new theoretical foundation and methodology 
for the following major research directions:

(1) Automatic Mesh Generation

(2) General Moving Mesh Method

(3) Lagrangian CFD



Thank You



Secret of Perfection

“As I am not pressed and work more for my 
pleasure than from duty,………..
I make, unmake, and remake, until I am 
passably satisfied with my results, which 
happens only rarely”

Joseph-Louis Lagrange (1736-1813)



6. Automatic Mesh Generation

Example 2 .  Steady supersonic flow
(Space-marching, WH Hui & JJ Hu)
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Flow-Generated Mesh (Close View) 
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Surface Mach number distribution, 120 cells
Computing time: 1.8s (P4, 2.8GHz)
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measured by 
experiment

Computed 
by Cornell 
group

Computed 
by HKUST



Computed paths (10 full rotations )
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• Fluttering and then tumbling



• tumbling



“Optimal” Coordinates

For compressible flow, we want a coordinate 
system to possess the following properties:

(a) Conservation PDEs exist, as in Eulerian;

(b) Contacts are sharply resolved, as in Lagrangian;

(c) Body-fitted mesh can be generated automatically;

(d) Mesh to be orthogonal;

(e) ……

The unified coordinate system satisfies these 
requirements



Computational procedure:
(1) At time t, the body position and mesh velocity 

are given;
(2) Use Xu’s gas kinetic-BGK solver to find the flow 

and hence the aerodynamic forces on the body 
(Note: the effects of mesh movement on the flow are 
correctly and fully accounted for through the geometric 
conservation laws);

(3) Use Newton’s 2nd law to compute the motion of 
the body under the aerodynamic and gravitational 
forces, giving the body position and the mesh 
movement at new time;

Repeat (1) – (3).



UC Computation
As we have conservation form, computations are done 

like Eulerian in -- space by marching in timeλ, (eg, 
Godunov-MUSCL scheme plus splitting). At each time step
the mesh velocity (U, V) is either given or computed. 



(3) The system of Lagrangian gas dynamics 
equations is written in conservation PDE
form, thus providing a foundation for developing 
Lagrangian schemes as moving mesh schemes. 

(4) The Lagrangian system of gas dynamics 
equations in 2-D and 3-D are shown to be
only weakly hyperbolic, in contrast to the 
Eulerian system which is fully hyperbolic; hence 
the two systems are not equivalent to each 
other. 



(5) The UC possesses the advantages of  
Lagrangian system: contact discontinuities 
are resolved sharply. 

(6) In using the UC, there is no need to 
generate a body-fitted mesh prior to 
computing flow past a body; the mesh is 
automatically generated by the flow. 



• CFD as Numerical Solution to Nonlinear  
Hyperbolic PDEs

• G F B Riemann (1860) gave the theoretical foundation:
• Riemann invariants and Riemann problem

• L F Richardson (1922) proposed weather prediction by                    
numerical computation.

• (wanting to find numerical solutions to fluid flow 
immediately raises many interesting theoretical and 
practical questions, and progresses are made in 
answering them).



• 1. The discovery of the CFL condition

(Courant, R.,   Friedrichs, K.O. and Lewy, 1928). 
It simply says that in a time-marching process 
to find a numerical solution, marching too fast 
causes numerical instability and destroys the 
solution.



• 2. Practical methods for computing solution with 
shocks are developed:

•
• Artificial viscosity method of von Neumann and    

Richtmyer (1950)

• Godunov method (1959)

• Glimm random choice method (1965)

• Shock-fitting method (1972)



• 3. P D Lax &  B  Wendroff (1960) pointed out: in 
order to numerically capture shock discontinuities 
correctly, the governing PDE should be written in 
conservation form. 

• in Eulerian cordinates:  easy

• in Lagrangian coordinates
• for1-D flow: easy

• for 2-D d 3-D flow: Hui, Li & Li (1999)



• 4. To extend Godunov’s method to 
higher order accuracy: limiters and 
TVD were introduced which avoid non-
physical oscillations in high resolution 
schemes. (J P Boris & D L Book,1973; 
B van Leer, 1973)



• 5. To search for the optimum coordinate system:

Particle-in-Cell method (F H Harlow, 1955); 
• Arbitrary- Lagrangian-Eulerian method (C W                                            

Hirt, A A Amsden & J L Cook, 1974);
• Moving mesh methods (J U Brackbill & J S 

Saltzman, 1982); 
• Unified coordinate method (W H Hui, 2007).



• 6. For computing flow past a given body:
• Automatic mesh generation

• (W H Hui, G P Zhao & J J J Hu, 2005)



A typical Lagrangian grid

Computation breaks down 
soon afterwards





D Serre in “Systems of Conservation Laws” (1999)  
states “Writing the equations of gas dynamics in 
Lagrangian coordinates is very complicated if ”.2D

The difficulty lies in the momentum equation
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(Eulerian,
conservation form
and hyperbolic)

(The seminal papers by Von Neumann(1946) and Godunov (1959)

use Lagrangian system. Equivalency established by D H Wagner (1987))

By transformation
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Determination of Mesh Velocity (U, V )

(A)  coordinate lines  = const. shall be material lines of fluid 
particles, meaning           .      

(V – v) A - (U – u) B = 0

(2) As the body surface is a material line, condition (a) guarantees that
the unified mesh is automatically a body-fitted mesh.

(a)

We place two requirements:

0
Dt

D q With       0
Dt

D Q

this gives

Observations:
(1) Contact lines, being material lines, must coincide with coordinate                   

lines  = const and, therefore, can be resolved sharply.

(3)  (x, y, t) is a level set function.
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(B)  Mesh angles and orthogonality shall be preserved, 
yielding an ODE for U
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U (η) prescribed at η= const.

Alternatively, we may require area (Jacobian) 

be preserved.



Hyperbolicity of Lagrangian Gas Dynamic             
Equations

All eigenvalues are real.

For eigenvalue 0 (multiplicity 6), there exist      
4, or 3, or 5 linearly independent eigenvectors,
depending on how the differential constraints

are used.
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In all cases, the system is weakly hyperbolic.



Lagrangian re-formulation of Eulerian hyperbolic system will
generically leads to a weak hyperbolic system.
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Consider inviscid hyperbolic Burgers equation 
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Derivation of Governing Equations in

Conservation PDE Form

in Unified Coordinates 



are defined similarly.d̂

Consider conservation of mass
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Transform Cartesian coordinates (t, x, y, z) to the 
unified coordinates (λ, ξ, η, ζ) via

ddt 
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 QdMdBdVddy 



Since from the transformation, we have
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Similarly for the momentum and energy equations.

we get (by Gauss divergence theorem)
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This is the mass equation in conservation form, where
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in Cartesian coordinates
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The physical laws are now written in

conservation PDE form in the unified

coordinates, including the Lagrangian.

Summary
in unified coordinates
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Potential Applications 
(1) Multi-fluid flow: material interfaces

(2) Fluid-solid Interactions: moving interface     
and small cut cells

(3) Blood flow in arteries: deforming boundary

(4) Debris flow: terrain-following 
coordinates and moving boundary

(5) Typhoon: bottom topography, slip surface    
resolution and grid uniformity


