

Dynamic Discrete Ordinate Method in Solving Boltzmann Equation for Gas Flows

Chin-Tsau HSU

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology

Ka Fai SIN

Management Consulting Division,
Ove Arup & Partners Hong Kong Limited

International Conference on Flow Physics and its Simulation - In Memory of Prof. Jaw-Yen Yang, 3-5 December 2016, Taipei, Taiwan

Outline

- I. Boltzmann Equation
- II. Discrete Ordinate Method (DOM)
- III. Dynamic Discrete Ordinate Method (DDOM)
- IV. Numerical Results and Validations
- V. Massively Parallel Computation
- VI. Conclusions

▶ X

 d^3x

I. Boltzmann Equation

• Transport equation of velocity distribution function (f) of number density (n)

 d^3c

$$\int_{-\infty}^{+\infty} f(\bar{x}, \bar{c}, t) d^3 c = n$$

- Dilute gas
- Elastic collision:

$$\vec{c} + \vec{c}_1 = \vec{c}' + \vec{c}_1'$$
; $\vec{c}^2 + \vec{c}_1^2 = \vec{c}'^2 + \vec{c}_1'^2$

I. Boltzmann Equation

Boltzmann equation

$$\frac{\partial f}{\partial t} + \vec{c} \frac{\partial f}{\partial \vec{x}} + \vec{F} \frac{\partial f}{\partial \vec{c}} = \Omega(f)$$

where the collision integral: $\Omega(f) = \int_{-\infty}^{+\infty} (f'f_1' - f f_1) gb db d\varepsilon d^3 c_1$

Hydrodynamic moments

$$\rho = m \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f d^3 c \qquad \qquad \rho \vec{u} = m \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \vec{c} f d^3 c$$

$$\rho e = m \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2} (\vec{c} - \vec{u})^2 f d^3 c$$

(m = 1) if particle mass is used as a unit scale to measure mass)

Equilibrium State

Equilibrium velocity distribution function (Maxwellian)

$$f^{eq}(\bar{c}) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \exp\left\{-\frac{m}{2kT}\left[\left(\bar{c} - \bar{u}\right)^{2}\right]\right\}$$

$$\Omega(f^{eq}) = 0$$

• Therefore, $\Omega = v \left(f^{eq} - f \right)$ mathematically exact where the collision frequency is a function of n and c.

Boltzmann Equation with BGK Model

Bhatnagar-Gross-Krook (BGK) collision model:

$$\frac{\partial f}{\partial t} + \bar{c} \frac{\partial f}{\partial \bar{x}} + \bar{F} \frac{\partial f}{\partial \bar{c}} = v \left(f^{eq} - f \right)$$

$$f^{eq} \left(\bar{c} \right) = \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} \exp \left[-\frac{m}{2kT} \left(\bar{c} - \bar{u} \right)^{2} \right]$$

Coupling with hydrodynamic moments

$$Q_{i} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \psi_{i} f d^{3} c \quad ; \quad Q_{i} = \left(\rho, \rho \bar{u}, e\right) \quad ; \quad \psi_{i} = \left[1, \bar{c}, \frac{1}{2} \left(\bar{c} - \bar{u}\right)^{2}\right]$$

• Leading to incorrect Prandtl number (Pr) when the collision frequency is

taken as constant:
$$\mu = \frac{p}{v}$$
 $K = \frac{5}{2} \frac{k}{m} \frac{p}{v}$ $Pr = 1$

Boltzmann BGK Equation in 2 and 1 Dimensions

• Defining
$$f_2(\vec{x}, \vec{c}_2, t) = \int_{-\infty}^{+\infty} f(\vec{x}, \vec{c}_2, c_3, t) dt$$
 assuming $\frac{\partial f_2}{\partial x_3} = 0$

Integrating the 3-D BGK Boltzmann equation,

$$\frac{\partial f_2}{\partial t} + \vec{c}_2 \frac{\partial f_2}{\partial \vec{x}_2} + \vec{F} \frac{\partial f_2}{\partial \vec{c}_2} = v \left(f_2^{eq} - f_2 \right) ; \quad f_2^{eq} \left(\vec{c}_2 \right) = \left(\frac{m}{2\pi kT} \right) \exp \left[-\frac{m}{2kT} \left(\vec{c}_2 - \vec{u}_2 \right)^2 \right]$$

$$Q_{i} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \psi_{i} f_{2} d^{2} c \qquad ; \quad Q_{i} = \left(\rho, \rho \vec{u}_{2}, e\right) \quad ; \quad \psi_{i} = \left[1, \vec{c}_{2}, \frac{1}{2} \left(\vec{c}_{2} - \vec{u}_{2}\right)^{2}\right]$$

Similarly, for 1-D Boltzmann equation,

$$\frac{\partial f_{1}}{\partial t} + c \frac{\partial f_{1}}{\partial x} + F \frac{\partial f_{1}}{\partial c} = v \left(f_{1}^{eq} - f_{1} \right) \quad ; \quad f_{1}^{eq} \left(c \right) = \left(\frac{m}{2\pi kT} \right)^{\frac{1}{2}} \exp \left[-\frac{m}{2kT} \left(c - u \right)^{2} \right]$$

$$Q_{i} = \int_{-\infty}^{+\infty} \psi_{i} f_{1} dc \quad ; \quad Q_{i} = \left(\rho, \rho u, e \right) \quad ; \quad \psi_{i} = \left[1, c, \frac{1}{2} \left(c - u \right)^{2} \right]$$

Boltzmann-BGK Equation Solvers

- Gas-Kinetic Scheme (GKS)
- Discrete Ordinate Method (DOM)
- Lattice Boltzmann Method (LBM)

II. Discrete Ordinate Method (DOM)

Basic Features of DOM

Finite discrete velocity points

$$f\left(c_{_{X}},c_{_{Y}},c_{_{Z}}\right) \Rightarrow \left[f_{_{1,1,1}},...,f_{_{lpha,eta,\gamma}},...,f_{_{N_{_{X}},N_{_{Y}},N_{_{Z}}}}
ight]$$

Splitting method

$$\frac{\partial f_{\alpha,\beta,\gamma}}{\partial t} + \vec{c}_{\alpha,\beta,\gamma} \frac{\partial f_{\alpha,\beta,\gamma}}{\partial \vec{x}_{\alpha,\beta,\gamma}} = \Omega_{\alpha,\beta,\gamma} \rightarrow \frac{\partial f_{\alpha,\beta,\gamma}}{\partial t} + \vec{c}_{\alpha,\beta,\gamma} \frac{\partial f_{\alpha,\beta,\gamma}}{\partial \vec{x}_{\alpha,\beta,\gamma}} = 0 \text{ and } \frac{\partial f_{\alpha,\beta,\gamma}}{\partial t} = \Omega_{\alpha,\beta,\gamma}$$

Quadrature scheme

$$\iiint \psi_{i} f dc^{3} \approx \sum_{\alpha=1}^{N_{x}} \sum_{\beta=1}^{N_{y}} \sum_{\gamma=1}^{N_{z}} W_{\alpha,\beta,\gamma} \left[\psi_{i}(c) f(c) \right]_{\alpha,\beta,\gamma}$$

Difficulties of Conventional DOM

- Difficulties encountered for high Mach number flows.
- High demand on computational resource due to large number of quadrature points needed to recover f eq
- Sensitivity of the discrete point selection

Objectives

- To develop a simple, robust, and efficient DOM solver
 - Reformulation: DOM with Dynamic Quadrature Scheme (DQS)
 - Code development
 - Code validation
 - Code speed enhancement
 - Code parallelization

III. Dynamic Discrete Ordinate Method

- a. Dynamic Quadrature Scheme (DQS)
- b. Transformed Moment Integral
- c. Algorithm of Dynamic Discrete Ordinate Method (DDOM)

Dynamic Quadrature Scheme (DQS)

Coordinate transformation of velocity space

$$\vec{\xi} = \frac{\vec{c} - \vec{u}}{\sqrt{2RT}}$$

Gaussian profile

$$f \approx f^{eq} = G(\bar{\xi}) = \exp^{-\bar{\xi}^2}$$

- Optimizing quadrature point distribution
- Equivalency to the first-order Chapman-Enskog expansion
- 3x3x3 quadrature points for recovery NSF equations for 3D case

$$Q = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \sum_{k=1}^{N_z} W_{i,j,k} P_{i,j,k}^{\alpha} (\bar{\xi}) + O(Kn^{\alpha})$$

- $ar{archi}$ changing with time and space for fixed $ar{arxieta}$

Transformed Moment Integral

Transformed moment integral

$$Q_{i} = \iiint \psi_{i}(\vec{\xi}) f(\vec{\xi}) \| \vec{J} \| d\xi^{3}$$

Gaussian-like integrand

$$Q = \iiint e^{-\xi^2} \left(b_0 + \vec{b}_1 \vec{\xi} + + \vec{b}_2 \vec{\xi}^2 + \dots \right) d\xi^3$$

Algorithm of Dynamic Discrete Ordinate Method

- Similar to the algorithm of DOM
 - Solving BGK Boltzmann equation in physical velocity space
 - Collision
 - Advection
 - Calculating hydrodynamic moments in transformed velocity space
 - DQS
 - Error of O(Kn²) with 3 x 3 x 3 Gaussian-Hermite quadrature
 - Collision modeling
 - Viscous flow (Chapman-Enskog expansion)

$$f = f^{eq} (1 + \phi)$$
 where $\phi = -\frac{1}{v f^{eq}} \left(\frac{\partial f^{eq}}{\partial t} + \vec{c} \cdot \frac{\partial f^{eq}}{\partial \bar{x}} \right)$

Inviscid flow

$$n \to \infty \qquad f = f^{eq}$$

IV. Numerical Results and Validations

- a. Hardware/software configuration
- b. One-dimensional Riemann problems
- c. Two-dimensional problems
 - Riemann problems
 - Backward-step problem
 - Shock-reflection problem
 - Cavity flow problems
- d. Performance comparison with Roe solver

Hardware/software configuration

- Dell T7400 with dual CPU of Intel Xeon 5482 @ 3.20GHz
- No any parallelization and optimization flag
- Fortran PGI 10.0

One-Dimensional Riemann Problems

Shock tube problems

Initial conditions	ρ _ι , ρ _ι , u _l	p_r, ρ_r, u_r	t _{final}
Sod (subsonic)	1, 1, 0	0.1, 0.125, 0	0.18
Sjogreen (subsonic)	1.8, 1, -1	1.8, 1, 1	0.14
Sjogreen (supersonic)	0.4, 1, -2	0.4, 1, 2	0.14

Numerical setting	grid nos.	quad. pts.	Δt/Δx
Numerical setting	400	3	0.125

One-Dimensional Riemann Problems

Numerical result of density profile (reference to solid-line of exact solution)

One-Dimensional Riemann Problems

1-D speedup tests (with incomplete transformations)

DOM	DDOM-S	DDOM-P	DDOM
$\vec{\xi} = \vec{c}$	$\vec{\xi} = \vec{c} - \vec{u}$	$\vec{\xi} = \frac{\vec{c}}{\sqrt{2RT}}$	$\vec{\xi} = \frac{\vec{c} - \vec{u}}{\sqrt{2RT}}$

Sod (subsonic)	DOM	DDOM-S	DDOM-P	DDOM
Quad. Pts.	18	14	8	3
Speedup	1.00	0.88	1.45	4.27
Quad. Eff.	1.00	1.46	1.55	1.46

Sjogreen (supersonic)	DOM	DDOM-S	DDOM-P	DDOM
Quad. Pts.	20	24	14	3
Speedup	1.00	0.57	0.99	4.82
Quad. Eff.	1.00	1.46	1.42	1.38

- 2-D Riemann problem
- Backward-step problem
- Shock-reflection problem
- Cavity flow problem
- 2-D speedup tests

• 2-D Riemann problems

Initial conditions	Initial conditions		right	t _{final}
Conf. 7 (subsonic)	upper	0.4, 0.5197, -0.6259, 0.1	1, 1, 0.1, 0.1	0.25
$[p, \rho, u, v]$	lower	0.4, 0.8, 0.1, 0.1	0.4, 0.5197, 0.1, -0.6259	0.23
Conf. 15 (supersonic)	upper	0.4, 0.5197, -0.6259, -0.3	1, 1, 0.1, -0.3	0.20
$[p, \rho, u, v]$	lower	0.4, 0.8, 0.1, -0.3	0.4, 0.5313, 0.1, 0.4276	0.20
Conf. 5 (supersonic)	upper	1, 2, -0.75, 0.5	1, 1, -0.75, -0.5	0.23
$[p, \rho, u, v]$	lower	1, 1, 0.75, 0.5	1, 3, 0.75, -0.5	0.23

Numerical setting	grid nos.	quad. pts.	Δt/Δx
Numerical setting	400 x 400	2 x 2	0.125

Numerical result of density contours (reference to Riemann solver)

Backward-step problem

Initial conditions	р	ρ	u	V
inflow	2.4583	1.8620	0.8216	0
outflow	1	1	0	0

Numerical setting	grid. nos.	quad. pts.	Δt/Δx	t _{final}
Numerical setting	320 x 320	3 x 3	0.125	0.75

Numerical result of density contours (reference to Riemann solver)

Backward-step [Takayama and Inoue (1991)]

Shock-reflection problem

Boundary conditions	р	ρ	u	V
top	1.5282	1.69997	2.61934	0.50632
left	0.7143	1	2.9	0

Numerical setting	grid. nos.	quad. pts.	Δt/Δx	t _{final}
Numerical setting	800 x 200	3 x 3	0.125	2.0

• Numerical result of pressure contours (reference to theoretical prediction)

Steady state solution of cavity flow (reference to LBM solver)

Re	Mach nos.	U _{top}	U_{side}	grid nos.	quad. pts.	$\Delta t/\Delta x$	t _{final}
100	0.15	0.1	0	502 x 502	3x3	0.3	¥
1,000	0.15	1	0	502 x 502	3x3	0.3	¥

Re = 1,000 (DDOM)

Re = 1,000 [Hou et al.(1995)]

2-D speedup tests (Riemann and Backward-step problems)

Convergence rate	Quad. Pts.		Speedup	
Convergence rate	DOM	DDOM	DOM	DDOM
Riemann	256	4	1.00	20.09
Backward-Step	324	9	1.00	14.98

Performance Comparison with Roe Solver

- Roe solver by CLAWPACK (approximated Riemann solver)
 - Stable
 - Efficient
 - Low-numerical viscosity
- Enhanced DDOM solver
 - Inviscid flow model
 - Fast-scheme + Adaptive quadrature method

Performance Comparison with Roe Solver

Speedup tests (Conf. 8 of 2D Riemann problem with 400 x 400 grids)

DDOM is 14% faster than Roe Solver

Performance Comparison with Roe Solver

Speedup tests (Conf. 6 of 2D Riemann problem with 400 x 400 grids)

DDOM is 14% faster than Roe Solver

Concluding Remarks on 2-D DDOM

- 2D-DDOM code is 20 times faster than conventional DOM.
- 2. Enhanced 2D-DDOM code is 14% faster than Roe solver.
- 3. With single CPU, real running time about 100 seconds for the 2-D Riemann problems of very short time (0.3 second).
- 4. Estimated time, for 3-D Riemann problem with grid 400 x 400 x 400 and quadrature 3 x 3 x 3, will be about 33 hours.
- 5. Parallel computing is inevitable for practical 3-D DDOM simulations.

Preliminary 3-D Test Results

• Riemann problem with 400 x 400 x 10 grids

200 times speedup

Conf. 15 (subsonic)	Quad. pts.	Speedup	Cost/step/grid(ms)
DDOM	2 x 2 x 2	232X	1.31
DOM	16 x 16 x 16	1X	304.

V. Massively Parallel Computation

- a. Features of DDOM for parallelization
- b. Methods of parallel computing
- c. Hardware configuration
- d. Performance tests

Features of DDOM for Parallelization

Uncoupled features

- Spatial space (x, y, and z grid system)
- Velocity space (C_{α} , C_{β} and C_{α} uadrature points)

Data-localization

- Nearby spatial and velocity space data
- Low data accessing time

Simple algebraic algorithm

- No iteration
- Only algebraic operation

Methods of Parallel Computing

- Parallel programming methods
 - Domain decomposition
 - Parallel programs (OpenMP, MPI, CUDA)

Hybrid parallelism model

Hardware Configurations

Beowulf cluster

Setup of Beowulf cluster

Platform	Device	Node	Core/Node	Processor/Core	Processor
Cluster	Intel W5590	8	2	4	64
Cluster	Nvidia GTX 460	2	2	336	1,344
Ciustei	Intel W5590				

Test Problems and Settings

Test p	roblems	Grid nos.	Quad. pts.	Scheme	Parallel-level
Α	2-D Riemann	2,500 x 2,500	3 x 3	Standard	Thread
В	2-D Riemann*	640 x 640 x 44	3 x 3 x 3	Fast	Data
С	2-D Cavity flow	1,024 x 1,024	3 x 3	Standard	Data

Test nos.	Program	Memory	Node	Core / GPU
А	OpenMP/MPI	Shared/Distributed	8	16 / 32 / 64
В	OpenMP/MPI/CUDA	Shared/Distributed	2	1/2/4
С	OpenMP/MPI/CUDA	Shared/Distributed	2	1/2/4

^{* 2-}D Riemann problem calculated with 3D-DDOM code, where the gradient of the macroscopic variables in z-direction are given as zero.

Preliminary Results of Parallel-DDOM

Parallel-DDOM Performance

- Over 90% parallel efficiency of parallel-DDOM solver is achieved for CPU-cluster.
- Around 80 to 90 % parallel efficiency of parallel-DDOM solver is achieved for GPUcluster.
- Parallel DDOM is a good candidate for parallel computing.

DDOM Code Summary

	Inviscid flow	✓	
Robust	Viscous flow	✓	
	Incompressible flow	✓	
	Compressible flow	✓	
Efficient	Quadrature points	2x2x2 — 3x3x3 for 3D case	
	Speedup over DOM	Around 20X for 2D case	
	Performance	Efficiency as Roe solver	
Scalable -	Speedup by CPU cluster	Over 57X @ 90% parallel efficiency	
	Speedup by GPU cluster	Over 780X @ 80% parallel efficiency	

VI. Conclusions

- DOM was reviewed to reveal its low-efficiency deficiency at high Mach number.
- DQS was proposed and implemented to DOM, termed as DDOM, to resolve the deficiency of DOM.
- 3. One and two-dimensional DDOM codes were developed and tested to show the codes are robust applicable to different type of flows.

VI. Conclusions

- 4. The 1-D DDOM code is 5-times faster than conventional 1-D DOM code, and 20-times faster for 2-D DDOM code.
- 5. Further enhancement of the 2-D DDOM code achieved 14% faster than Roe solver.
- Parallel 2-D and 3-D DDOM codes have been developed and preliminarily tested.
- 7. Over 90% parallel efficiency has been achieved with 64-CPUs cluster, and about 80 to 90% parallel efficiency with 4-GPUs cluster (780 times speedup).

THANK YOU