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Self-propelled swimmers consume energy from internal or 
external sources and dissipate it by actively moving through the 
medium that they inhabit. 

(Swimmer pushes water 
 in the backward direction) 

(Water exerts a force 
on the swimmer) 

Introduction : Propulsion / Swimmer 



3 Microswimmer 

Microorganisms utilize a wide variety of swimming mechanisms 
 such as beating cilia and flagellar propulsion to propel themselves.  
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Self-propulsion of a Janus sphere via the asymmetric distribution 
of reaction products and an accompanying osmotic potential. 

Janus sphere 

chemical energy → kinetic energy 

Artificial Swimmer 

Janus sphere 
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P. Galajda et al, J. Bacteriol., 2007, 189, 8704. 

The concentration difference of E. coli occurs through barrier walls. 

Rectification Phenomenon 

opening 

a wall with barriers 
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F. Müller‐Plathe, ChemPhysChem, 2002, 3, 754‐769. 

Simulation Method : Dissipative Particle 
Dynamics (DPD) 
 

DPD 

• Microdrop dynamics 
• Multiphase flow in microchannels 
• Movement and suspension of  
       macromolecules in microchannels 
• Movement and deformation of  
       single cells 
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a cluster of atoms or molecules 

Coarse-Graining of Small Molecules 

DPD is an off-lattice and particle-based simulation method. 

Coarse-graining 

DPD bead : 
Nano-sized or 
Micro-sized. 

 Some trivial molecular details that do not affect the behavior at 
     larger scales can be ignored, while the main features of concerned 
     physics need to be effectively obtained.  
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poly(ethylene oxide)-block-polybutadiene diblock copolymer (PEO-b-PB) 

a cluster of atoms 

Coarse-Graining of a Polymer 

Coarse-graining 

Realistic polymer 

Coarse-grained polymer 



9 Coarse-Graining of a Colloidal Particle 

Colloidal Silica  DPD Microswimmer 

Coarse-graining 



10 

1. Conservative force (       ) C
ijF

2. Dissipative force (       ) D
ijF

3. Random force (       ) R
ijF

■ Newton’s law of motion 

■ Non-bonded DPD forces 

Time evolution 
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 Soft repulsive force 
 aij is a maximum repulsion 

between particles i and j. 
 The conservative force provide 

beads a chemical identity. 

Interaction parameter 

Cutoff radius 

𝑑𝑑𝒓𝒓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒗𝒗𝑖𝑖 
𝑑𝑑𝒗𝒗𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝒇𝒇𝑖𝑖
𝑚𝑚𝑖𝑖

 ; 

R. D. Groot and P. B. Warren, JCP, 1997, 107, 4423. 

𝒇𝒇𝑖𝑖=∑ 𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖≠𝑖𝑖  

DPD : Conservative Force 

Conservative Force 
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 Frictional force 
 Represents viscous resistance 

within the fluid 
 Reduce the relative velocity of the 

pair of beads. (leading to energy 
loss) 

1. Conservative force (       ) C
ijF

2. Dissipative force (       ) D
ijF

3. Random force (       ) R
ijF

■ Newton’s law of motion 

■ Non-bonded DPD forces 

Mesoscale simulation 

𝑑𝑑𝒓𝒓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒗𝒗𝑖𝑖 
𝑑𝑑𝒗𝒗𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝒇𝒇𝑖𝑖
𝑚𝑚𝑖𝑖

 ; 

Friction coefficient 

r-dependent  
weight function 

𝜔𝜔𝐷𝐷 𝑟𝑟 = 1 −
𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐

2

, 𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐 

ijijij
DD

ijF rr ˆ)ˆ( v⋅−= γω

P. Espanol and P. Warren, EPL, 1995, 30, 191. 

𝒇𝒇𝑖𝑖=∑ 𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖≠𝑖𝑖  

DPD : Dissipative Force 

Dissipative Force 
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 Compensates for lost degrees of 
freedom eliminated after the coarse-
graining. 

 Puts in energy to the system with 
inducing energy fluctuation.  

DPD thermostat 

1. Conservative force (       ) C
ijF

2. Dissipative force (       ) D
ijF

3. Random force (       ) R
ijF

■ Newton’s law of motion 

■ Non-bonded DPD forces 

Mesoscale simulation 

𝑑𝑑𝒓𝒓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒗𝒗𝑖𝑖 
𝑑𝑑𝒗𝒗𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝒇𝒇𝑖𝑖
𝑚𝑚𝑖𝑖

 ; 

Noise amplitude 

r-dependent  
weight function 

𝜎𝜎 = 2𝛾𝛾𝑘𝑘𝐵𝐵𝑇𝑇 2 
𝜔𝜔𝑅𝑅 = 𝜔𝜔𝐷𝐷 1/2 

P. Espanol and P. Warren, EPL, 1995, 30, 191. 

𝒇𝒇𝑖𝑖=∑ 𝑭𝑭𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑭𝑭𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑭𝑭𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖≠𝑖𝑖  

DPD : Random Force 

Random Force 

ijij
RR

ijF r̂ξσω−=

 Constant mean temperature of the system  
 Correct description of hydrodynamics 
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Spring Force 

Angle  Force 
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Connectness: 

Rigidity: 
Model Microswimmer  

DPD : Bonded Forces 

Model Polymer  
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To advance the set of positions and velocities, a modified 
 version of the velocity-Verlet algorithm is used, 
𝒓𝒓𝑖𝑖 𝑑𝑑 + ∆𝑑𝑑 = 𝒓𝒓𝑖𝑖 𝑑𝑑 + ∆𝑑𝑑𝒗𝒗𝑖𝑖 𝑑𝑑 + 1

2
∆𝑑𝑑 2𝒇𝒇𝑖𝑖 𝑑𝑑 , 

𝒗𝒗�𝑖𝑖 𝑑𝑑 + ∆𝑑𝑑 = 𝒗𝒗𝑖𝑖 𝑑𝑑 + 𝜆𝜆Δ𝑑𝑑𝒇𝒇𝑖𝑖(𝑑𝑑), 

𝒇𝒇𝑖𝑖 𝑑𝑑 + Δ𝑑𝑑 = 𝒇𝒇𝑖𝑖 𝒓𝒓 𝑑𝑑 + Δ𝑑𝑑 ,𝒗𝒗� 𝑑𝑑 + Δ𝑑𝑑 , 

𝒗𝒗𝑖𝑖 𝑑𝑑 + Δ𝑑𝑑 = 𝒗𝒗𝑖𝑖 𝑑𝑑 +
1
2
Δ𝑑𝑑 𝒇𝒇𝑖𝑖 𝑑𝑑 + 𝒇𝒇𝑖𝑖 𝑑𝑑 + Δ𝑑𝑑 . 

Modified Velocity-Verlet Algorithm 

𝑑𝑑𝒓𝒓𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒗𝒗𝑖𝑖 
𝑑𝑑𝒗𝒗𝑖𝑖
𝑑𝑑𝑑𝑑

=
𝒇𝒇𝑖𝑖
𝑚𝑚𝑖𝑖

 Initial position and velocity 
 for each bead are provided. 
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Chamber I 

Fa 

-Fa 

Active  
Particle 

Solvent 

Chamber II 

Simulation System 

Active  
Particle 

Solvent 

Ar (= ρΙΙ / ρΙ )  

ρΙ ρΙΙ 

Rectification ratio 
ρ: active particle density 



16 Simulation Movie 

Initial state Final state 
Ar (= ρΙΙ / ρΙ )=2.2  

 Only the movements of active 
     particles are shown. 
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(i) (ii) 

Chamber I Chamber II 

Geometry-assisted  
diffusion 

Trap-hindered 
diffusion 

The coupling effect leads to the rectification outcome. 

Nanoscale 7, 16451 (2015) 

Rectification Mechanism 

Chamber I Chamber II 
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Density Profile 

ρΙΙ  
 ρΙ   

z 
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Trap-hindered effect 

Chamber I 
Chamber II 

The Effect of the Trap 

open closed 
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0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

closed V-shape

 

 

A r

Fa

open V-shape 𝐹𝐹𝑎𝑎 ↑   ,  𝐴𝐴𝑟𝑟 ↑ 
Open barriers: 

A maximum exists for 
𝐴𝐴𝑟𝑟  𝑣𝑣𝑣𝑣 𝐹𝐹𝑎𝑎 

Closed barriers: 

Open barrier > Closed barrier 

Trap-hindered diffusion 
 is important. 

The Comparison of Rectification Ratio 
 between Open and Closed V-shape Barriers 
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Open barriers 
 
 
 
 
 
 
 
 
 

V-shape circular rectangular 

1.55 
8.25 

4.125 

Chamber I Chamber II 

The Effects of Barrier Structures 

1.55 
8.25 

4.125 

1.55 
8.25 

4.125 



22 Simulation Movies : Barrier Structures 

V-shape, Ar = 2.2  Circular, Ar = 3.4  
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Nanoscale 7, 16451 (2015) 

𝐹𝐹𝑎𝑎 ↑   ,  𝐴𝐴𝑟𝑟 ↑ 

Open barriers: 

Circular > Rectangular 
 > V-shape 

The Comparison of Rectification Ratio 
 between Different Barrier Structures 
 

0 1 2 3 4 5 6
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1.5

2.0

2.5

3.0

3.5
 circular (open)
 V-shape (open)

 

 

A r

Fa



24 Multilayered Enhancement 

Geometry-assisted  
diffusion 

Trap-hindered 
diffusion 

I II I II 
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Single, Ar = 3.4  Triple, Ar = 32  

Simulation Movies : Multilayered Enhancement 
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Initial state 

Final state 

Multilayered Enhancement : Density 
Profile 

Rectification ratio 
   Ar (= ρΙΙ / ρΙ ) =32 
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0 1 2 3 4 5 6

5

10

15

20

25

30

35

A r

Fa

 single layer
 double layer
 triple layer

Triple > Double 
 > Single 

 𝐴𝐴𝑟𝑟
(3) ∼ 𝐴𝐴𝑟𝑟

(1) 3
 

The Comparison of Rectification Ratio 
 between Different Number of Layers Structures 



28 Summary 

 The rectification of nano/micro-swimmers in a system with 
     asymmetric barriers is investigated by DPD simulations 
     which take into account hydrodynamic effects. 
 
 The rectification mechanism can be clearly identified: 
     geometry-assisted diffusion and trap-hindered diffusion. 
 
 Various barrier shapes are considered and the open circular 
     barrier has the best performance while the V-shape one 
     has the worst. 
 
 Rectification efficiency of nano/microswimmers can be 
     dramatically enhanced by a multi-layers of barriers. 
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