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Introduction 
 Moving Particle Methods 
- Describe fluid motion in Lagrangian Sense. 

- Simulation domain is filled with cloud of Lagrangian particles instead of the 
discretized stationary grid points. 

 

- Advantages:  

- 1) Does not rely on connectivity information between nodal points – 
Complex geometry can be easily dealt with. 

- 2) The non-linear convection term in governing equation of fluids can be 
easily modeled by particle movement. 



Introduction 
 Moving Particle Semi-Implicit (MPS) analysis 

framework 
- Solving Incompressible Navier-Stokes equations in a cloud of moving particles. 
- Particle interaction models representing differential operators in the governing equation of 

fluid flow. 
- Momentum equation is decomposed into viscous and pressure parts. 

 

𝐮𝐮∗ = 𝐮𝐮𝑛𝑛 + ∆𝑡𝑡
𝜇𝜇
𝜌𝜌 𝛻𝛻

2𝐮𝐮𝑛𝑛 

𝐱𝐱∗ = 𝐱𝐱𝑛𝑛 + ∆𝑡𝑡𝐮𝐮∗ 
 

𝐮𝐮𝑛𝑛+1 = 𝐮𝐮∗ −
∆𝑡𝑡
𝜌𝜌 𝛻𝛻𝑝𝑝𝑛𝑛+1 

𝐱𝐱𝑛𝑛+1 = 𝐱𝐱∗ −
∆𝑡𝑡 2

𝜌𝜌 𝛻𝛻𝑝𝑝𝑛𝑛+1 

 

 

- Viscous term is computed through explicit way, and pressure term is solved implicitly. 
 

Viscous part 

Pressure part 

(1) 

(2) 



Introduction 

 Moving Particle Semi-Implicit (MPS) analysis framework 
- Fluid density: modeled by Particle Number Density (PND) 
- Incompressible flow: PND 𝑛𝑛𝑖𝑖 should be constant. 
- Source term of pressure Poisson equation (PPE): deviation of the 

temporal PND 𝑛𝑛∗𝑖𝑖 from a constant 𝑛𝑛0 

𝛻𝛻2𝑃𝑃𝑛𝑛+1 𝑖𝑖 = −
𝜌𝜌
∆𝑡𝑡 2

𝑛𝑛∗𝑖𝑖 − 𝑛𝑛0

𝑛𝑛0  

 
- Equation (3) is solved implicitly. 
- The particle velocity and position are corrected using equation (2) 

after the pressure field is obtained. 
 

 

(3) 



Introduction 

 Moving Particle Semi-Implicit (MPS) analysis framework 

- Major drawback of MPS method: pressure instability. 

- PND source term in PPE results in high-frequency numerical 
oscillations, and leads to fluctuated pressure solution. 

- Discretization on particle cloud using particle interaction model is not 
as accurate as the conventional grid based method. 



Mixed Lagrangian-Eulerian Moving 
Particle (MLEMP) Method 
 Hybrid method proposed by Huang in Moving Particles with Pressure Mesh 

(MPPM model) method [1,2]. 

 Improves the pressure instability problem in MPS method by solving 
pressure on Eulerian grid using the method similar to conventional grid 
based method. 

 The viscous term is solved on Lagrangian particles as in original MPS 
method using equation (1) and (2). The guessed velocity 𝐮𝐮∗  is then 
interpolated to Eulerian grids to solve for the pressure solution. 

 Particle velocity and position are corrected by interpolating the pressure 
gradient on Eulerian grids back to Lagrangian particles. 

[1] Y.H. Hwang, A Moving Particle Method with Embedded Pressure Mesh (MPPM) for Incompressible Flow Calculations, Numerical Heat 
Transfer, Part B: Fundamentals, vol. 60, pp. 370-398, 2011. 

[2] Y.H. Hwang, Assessment of Diffusion Operators in a Novel Moving Particle Method, Numerical Heat Transfer, Part B, vol. 61, pp. 329-
368, 2012. 



Mixed Lagrangian-Eulerian Moving 
Particle (MLEMP) Method 
 Advantages: 
- Stable pressure solution: clustered particles no longer result in large 

magnitude of PPE source term. 

- Addition/removal of particles can be easily done without disturbing the 
flow: good for inflow/outflow boundary condition implementation. 

 
 

 Limitation: 
- Hybrid grid system: Data need to be transferred between two different grid 
systems in every time step. 

- Accuracy of interpolation scheme plays an important role on the quality of 
the pressure solution. 



Improvement on Present MLEMP Method 
 The accuracy of the MLEMP methods rely on the accuracy of 

the interpolation scheme between two grids system. 
 To improve the solution quality of the MLEMP method, new 

interpolation schemes are proposed:  
 

1) Radial Basis Function (RBF) Interpolation 
2) Mass-Preserving Interpolation 



Radial Basis Function Interpolation 
 An unknown scalar function 𝑓𝑓 𝐱𝐱  with the discrete 

value is known at N scattered nodes 𝐱𝐱𝐢𝐢, 𝑖𝑖 = 1,2 …𝑁𝑁. 
The function 𝑓𝑓 𝐱𝐱  can be approximated by RBF 
function 𝑠𝑠 𝐱𝐱 : 

𝑓𝑓 𝐱𝐱 ≈ 𝑠𝑠 𝐱𝐱 = �𝛼𝛼𝑖𝑖∅ 𝐱𝐱 − 𝐱𝐱𝐢𝐢

𝑁𝑁

𝑖𝑖=1

 

𝛼𝛼𝑖𝑖: Interpolation coefficients 
∅ 𝐱𝐱 − 𝐱𝐱𝐢𝐢 : RBF kernel chosen  

(4) 



Radial Basis Function Interpolation 
 Finding interpolation coefficients involves solving the linear 

system of N equations 𝐀𝐀𝛂𝛂 = 𝐟𝐟,  where 
𝛂𝛂 = 𝛼𝛼1 𝛼𝛼2 ⋯ 𝛼𝛼𝑁𝑁 𝑇𝑇 ,  𝐟𝐟 = 𝑓𝑓 𝐱𝐱𝟏𝟏 𝑓𝑓 𝐱𝐱𝟐𝟐 ⋯ 𝑓𝑓 𝐱𝐱𝑵𝑵 𝑇𝑇 , 
and: 
 

𝐀𝐀 =

∅ 𝐱𝐱𝟏𝟏 − 𝐱𝐱𝟏𝟏 ∅ 𝐱𝐱𝟏𝟏 − 𝐱𝐱𝟐𝟐
∅ 𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟏𝟏 ∅ 𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟐𝟐

⋯ ∅ 𝐱𝐱𝟏𝟏 − 𝐱𝐱𝐍𝐍
⋯ ∅ 𝐱𝐱𝟐𝟐 − 𝐱𝐱𝐍𝐍

⋮ ⋮
∅ 𝐱𝐱𝐍𝐍 − 𝐱𝐱𝟏𝟏 ∅ 𝐱𝐱𝐍𝐍 − 𝐱𝐱𝟐𝟐

⋱ ⋮
⋯ ∅ 𝐱𝐱𝐍𝐍 − 𝐱𝐱𝐍𝐍

 (5) 



Radial Basis Function Interpolation 
 RBF kernel chosen: Multiquadric (MQ) 

 Known to give higher solution accuracy compared to 
the other kernels. 
 

∅ 𝐱𝐱 − 𝐱𝐱𝐢𝐢 = 1 + 𝜀𝜀 𝐱𝐱 − 𝐱𝐱𝐢𝐢 2 
 
 The RBF linear system 𝐀𝐀𝛂𝛂 = 𝐟𝐟 becomes ill-

conditioned when shape parameter 𝜀𝜀 → 0. 
 The interpolation coefficients 𝜶𝜶  rapidly as  𝜀𝜀 

decreases. 
 



Radial Basis Function Interpolation 
 Interpolation coefficient 𝛂𝛂 diverged as 𝜀𝜀 → 0. 

 Often however, at any point, the interpolating 
function 𝑠𝑠 𝐱𝐱  itself (in equation (4)), is well behaved, 
and converges to finite number even when 𝜀𝜀 → 0. 

 In other words, 𝜀𝜀 = 0 is a removable singular point. 
 

[3] M. Mongillo,  Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods,  SIAM Undergraduate 
Research Online 4, 190-209, 2011 

Unstable region 



RBF-MQ in Polynomial Expression 
 Power series expansion 

1 + 𝑥𝑥 = 1 +
1
2
𝑥𝑥 −

1
2 ∙ 4

𝑥𝑥2 +
1 ∙ 3

2 ∙ 4 ∙ 6
𝑥𝑥4 − +⋯       𝑥𝑥 < 1 

 
 Expansion of multiquadric kernel 

    ∅ 𝑟𝑟 = 1 + 𝜀𝜀 𝑟𝑟 2 

                   = 1 +
1
2
𝜀𝜀𝑟𝑟2 −

1
2 ∙ 4

𝜀𝜀𝑟𝑟2 2 +
1 ∙ 3

2 ∙ 4 ∙ 6
𝜀𝜀𝑟𝑟2 3 −  + … 

 
 



RBF-MQ in Polynomial Expression 
 From the expansion, the RBF matrix 𝐀𝐀  in (5) can be 

decomposes into: 

𝐀𝐀 𝜀𝜀 = 𝐀𝐀𝟎𝟎 + 𝜀𝜀𝐀𝐀𝟏𝟏 + 𝜀𝜀2𝐀𝐀𝟐𝟐 + 𝜀𝜀3𝐀𝐀𝟑𝟑 + ⋯ 

𝐀𝐀 𝜀𝜀 = 𝐀𝐀𝟎𝟎 + �𝜀𝜀𝑘𝑘𝐀𝐀𝐤𝐤

∞

𝑘𝑘=1

 

 Since 𝜀𝜀 is small, finding inverse of 𝐀𝐀 𝜀𝜀  become a problem of 
finding inverse  of small perturbation of a singular matrix. The 
inverse of matrix A can be written in Laurent series expansion: 

𝐀𝐀−𝟏𝟏 𝜀𝜀 = � 𝜀𝜀𝑘𝑘𝐇𝐇𝐤𝐤

∞

𝑘𝑘=−𝑠𝑠

 

   s is the order of singularity  

 

 
 
 



RBF-MQ in Polynomial Expression 
𝐀𝐀−𝟏𝟏 𝜀𝜀 = 𝜀𝜀−𝑠𝑠𝐇𝐇−𝐬𝐬 + 𝜀𝜀−𝑠𝑠+1𝐇𝐇−𝐬𝐬+𝟏𝟏 + ⋯+ 𝐇𝐇𝟎𝟎 + 𝜀𝜀𝐇𝐇𝟏𝟏 + 𝜀𝜀2𝐇𝐇𝟐𝟐 + 𝜀𝜀3𝑯𝑯𝟑𝟑 + ⋯ 

        𝜶𝜶(𝜀𝜀) = 𝑨𝑨−𝟏𝟏(ε)𝐟𝐟 
 

𝜶𝜶 𝜀𝜀 = 𝜀𝜀−𝑠𝑠H−s𝐟𝐟 + 𝜀𝜀−𝑠𝑠+1H−s+1𝐟𝐟 + ⋯+ H0𝐟𝐟 +  𝜀𝜀H1𝐟𝐟 + 𝜀𝜀2H2𝐟𝐟 + 𝜀𝜀3H3𝐟𝐟 
 

 
 

 The interpolating function at any point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is: 
 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 𝛼𝛼1∅ 𝑟𝑟𝑖𝑖1, 𝜀𝜀 + 𝛼𝛼2∅ 𝑟𝑟𝑖𝑖2, 𝜀𝜀 + ⋯+ 𝛼𝛼𝑛𝑛∅ 𝑟𝑟𝑖𝑖𝑛𝑛, 𝜀𝜀  
 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 𝛂𝛂(𝜀𝜀)𝑇𝑇
∅ 𝑟𝑟𝑖𝑖1, 𝜀𝜀
∅ 𝑟𝑟𝑖𝑖2, 𝜀𝜀

⋮
∅ 𝑟𝑟𝑖𝑖𝑛𝑛, 𝜀𝜀

= 𝛂𝛂(𝜀𝜀)𝑇𝑇

1 + 1
2
𝜀𝜀𝑟𝑟𝑖𝑖12 −

1
2∙4
𝜀𝜀2𝑟𝑟𝑖𝑖14 + ⋯

1 + 1
2
𝜀𝜀𝑟𝑟𝑖𝑖22 −

1
2∙4
𝜀𝜀2𝑟𝑟𝑖𝑖24 + ⋯

⋮
1 + 1

2
𝜀𝜀𝑟𝑟𝑖𝑖𝑛𝑛2 −

1
2∙4
𝜀𝜀2𝑟𝑟𝑖𝑖𝑛𝑛4 + ⋯

 

 

𝛼𝛼−𝑠𝑠 𝛼𝛼−𝑠𝑠+1 𝛼𝛼0 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 



RBF-MQ in Polynomial Expression 
 
 
 
 
 
 
 Take out 𝜀𝜀 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 𝛂𝛂(𝜀𝜀)𝑇𝑇
1
1
⋮
1

+ 𝛂𝛂(𝜀𝜀)𝑇𝑇𝜀𝜀

1
2
𝑟𝑟𝑖𝑖12

1
2
𝑟𝑟𝑖𝑖22

⋮
1
2
𝑟𝑟𝑖𝑖𝑛𝑛2

+ 𝛂𝛂(𝜀𝜀)𝑇𝑇𝜀𝜀2

−
1

2 ∙ 4
𝑟𝑟𝑖𝑖14

−
1

2 ∙ 4
𝑟𝑟𝑖𝑖24

⋮

−
1

2 ∙ 4
𝑟𝑟𝑖𝑖𝑛𝑛4

+ ⋯ 

 
 
 
 
 
 
 

∅𝟎𝟎 

∅𝟏𝟏 ∅𝟐𝟐 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 𝛂𝛂(𝜀𝜀)𝑇𝑇
1
1
⋮
1

+ 𝛂𝛂(𝜀𝜀)𝑇𝑇

1
2
𝜀𝜀𝑟𝑟𝑖𝑖12

1
2
𝜀𝜀𝑟𝑟𝑖𝑖22

⋮
1
2
𝜀𝜀𝑟𝑟𝑖𝑖𝑛𝑛2

+ 𝛂𝛂(𝜀𝜀)𝑇𝑇

−
1

2 ∙ 4
𝜀𝜀2𝑟𝑟𝑖𝑖14

−
1

2 ∙ 4
𝜀𝜀2𝑟𝑟𝑖𝑖24

⋮

−
1

2 ∙ 4
𝜀𝜀2𝑟𝑟𝑖𝑖𝑛𝑛4

+ ⋯ 



RBF-MQ in Polynomial Expression 
𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 

𝜀𝜀−𝑠𝑠 𝛼𝛼−𝑠𝑠∅0 + 𝜀𝜀−𝑠𝑠+1 𝛼𝛼−𝑠𝑠+1∅0 + ⋯+ 𝜀𝜀0 𝛼𝛼0∅0 + 𝜀𝜀1 𝛼𝛼1∅0 + 𝜀𝜀2 𝛼𝛼2∅0 + ⋯ 

+ 𝜀𝜀−𝑠𝑠𝜀𝜀1 𝛼𝛼−𝑠𝑠∅1 + ⋯+ 𝜀𝜀−1𝜀𝜀1 𝛼𝛼−𝑠𝑠+1∅1 + 𝜀𝜀0𝜀𝜀1 𝛼𝛼0∅1 + 𝜀𝜀1𝜀𝜀1 𝛼𝛼1∅1 + ⋯ 

+ 𝜀𝜀−𝑠𝑠𝜀𝜀2 𝛼𝛼−𝑠𝑠∅2 + ⋯+ 𝜀𝜀−2𝜀𝜀2 𝛼𝛼−𝑠𝑠+1∅2 + 𝜀𝜀−1𝜀𝜀2 𝛼𝛼0∅2 + 𝜀𝜀0𝜀𝜀2 𝛼𝛼1∅2 + ⋯ 

= 𝜀𝜀−𝑠𝑠𝑃𝑃−𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 + 𝜀𝜀−𝑠𝑠+1𝑃𝑃−𝑠𝑠+1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 + ⋯+ 𝜀𝜀0𝑃𝑃0 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 + 𝜀𝜀1𝑃𝑃1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 + 𝜀𝜀2𝑃𝑃2 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 + ⋯ 

𝑃𝑃−𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝛼𝛼−𝑠𝑠∅0 

𝑃𝑃−𝑠𝑠+1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  = 𝛼𝛼−𝑠𝑠∅1 + 𝛼𝛼−𝑠𝑠+1∅0 

𝑃𝑃0 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  = 𝛼𝛼−𝑠𝑠∅𝑠𝑠+𝛼𝛼−𝑠𝑠+1∅𝑠𝑠+1 + ⋯+ 𝛼𝛼−1∅1 + 𝛼𝛼0∅0 

𝑃𝑃1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  = 𝛼𝛼−𝑠𝑠∅𝑠𝑠+1+𝛼𝛼−𝑠𝑠+1∅𝑠𝑠+2 + ⋯+ 𝛼𝛼0∅1 + 𝛼𝛼1∅0 

 
 
 
 
 

 Where: 

Singular part, often = 0 



RBF-MQ in Polynomial Expression 
 Previous steps shows that the RBF interpolating function 

can be simplifies to polynomials 

 The approach of [4,5] is applied to find the inverse of RBF 
matrix 𝐀𝐀−𝟏𝟏 in Laurent series expansion form, without 
actually solving the linear system: 
 
𝐀𝐀−𝟏𝟏 𝜀𝜀 = 𝜀𝜀−𝑠𝑠(𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝒊𝒊)# 𝜀𝜀 + ⋯+ 𝜀𝜀−2𝐂𝐂# 𝜀𝜀 + 𝜀𝜀−1𝐁𝐁# 𝜀𝜀 + 𝐀𝐀#(𝜀𝜀) 

  (𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝒊𝒊)# is the pseudo inverse of the component of 𝐀𝐀 𝜀𝜀  

 

[4] P. Gonzalez-Rodriguez, M. Moscoso, M. Kindelan, Laurent expansion of the inverse of perturbed, singular matrices, J. Comput. Phys., 
no. 299, 307-319, 2015 
[5] M. Kindelan, M. Moscoso, P. González-Rodríguez , Radial basis function interpolation in the limit of increasingly flat basis function,  J. 
Comput. Phys., no. 307, pp. 225-242, 2016 



RBF-MQ in Polynomial Expression 

𝐀𝐀 𝜀𝜀 = 𝐀𝐀𝟎𝟎 + 𝜀𝜀𝐀𝐀𝟏𝟏 + 𝜀𝜀2𝐀𝐀𝟐𝟐 + 𝜀𝜀3𝐀𝐀𝟑𝟑 + ⋯ 
 
Define resolvent of 𝐀𝐀 𝜀𝜀  as: 
 

𝐑𝐑 λ = (𝐀𝐀 − λ𝐈𝐈)−1 
The inverse of A restricted to the range: 

𝐀𝐀#(𝜀𝜀) = −
1

2𝜋𝜋𝑖𝑖
�

𝐑𝐑 𝜆𝜆
λ𝐶𝐶0

 𝑑𝑑λ 

𝐶𝐶0 is a positively-oriented contour enclosing λ0 = 0 but not other eigenvalue of 𝐀𝐀 



RBF-MQ in Polynomial Expression 

𝐀𝐀#(𝜀𝜀) = −
1

2𝜋𝜋𝑖𝑖
�

𝐑𝐑 𝜆𝜆
λ𝐶𝐶0

 𝑑𝑑λ 

The power series is obtained after integrating term by term 

𝐀𝐀# 𝜀𝜀 = 𝐀𝐀𝟎𝟎# + 𝜀𝜀𝐀𝐀𝟏𝟏# + 𝜀𝜀2𝐀𝐀𝟐𝟐# + ⋯ 
𝐀𝐀𝟎𝟎#  is the pseudo inverse of 𝐀𝐀𝟎𝟎 

Other terms, 𝑨𝑨𝒏𝒏# can be expressed as sum of matrix products:  

𝐀𝐀𝐧𝐧# 𝜀𝜀 = �(−1)𝑝𝑝 � 𝐒𝐒𝛍𝛍𝟏𝟏𝐀𝐀𝐯𝐯𝟏𝟏𝐒𝐒𝛍𝛍𝟐𝟐𝐀𝐀𝐯𝐯𝟐𝟐 … 𝐒𝐒𝛍𝛍𝐩𝐩𝐀𝐀𝐯𝐯𝐩𝐩𝐒𝐒𝛍𝛍𝐩𝐩+𝟏𝟏
𝑣𝑣1+𝑣𝑣2+⋯+𝑣𝑣𝑝𝑝=𝑛𝑛, 𝑣𝑣𝑖𝑖>0
𝜇𝜇1+⋯𝜇𝜇𝑝𝑝+1=𝑝𝑝+1, 𝜇𝜇𝑖𝑖≥0

𝑛𝑛

𝑝𝑝=1

 

𝐒𝐒𝟎𝟎 ≡ −𝐏𝐏𝟎𝟎 

𝐒𝐒𝐤𝐤 = (𝐀𝐀𝟎𝟎#)𝑘𝑘 for k > 0 

𝐏𝐏𝟎𝟎 = projection of 𝐀𝐀𝟎𝟎 onto null space 



RBF-MQ in Polynomial Expression 

𝐀𝐀−1 𝜀𝜀 = 𝐀𝐀# 𝜀𝜀 +
1
𝜀𝜀

1
𝜀𝜀 𝐀𝐀(𝜀𝜀)𝐏𝐏𝐀𝐀𝟎𝟎(𝜀𝜀)

#

 

𝐁𝐁 𝜀𝜀  

𝐁𝐁(𝜀𝜀) = −
1

2𝜋𝜋𝑖𝑖𝜀𝜀
� λ𝐑𝐑 𝜆𝜆
𝐶𝐶0

 𝑑𝑑λ 

𝐁𝐁 𝜀𝜀 = 𝐁𝐁𝟎𝟎 + �𝜀𝜀𝑛𝑛𝐁𝐁𝐧𝐧

∞

𝑛𝑛=1

 

𝐁𝐁𝐧𝐧 = −�(−1)𝑝𝑝 � 𝐒𝐒𝛍𝛍𝟏𝟏𝐀𝐀𝐯𝐯𝟏𝟏𝐒𝐒𝛍𝛍𝟐𝟐𝐀𝐀𝐯𝐯𝟐𝟐 … 𝐒𝐒𝛍𝛍𝐩𝐩𝐀𝐀𝐯𝐯𝐩𝐩𝐒𝐒𝛍𝛍𝐩𝐩+𝟏𝟏
𝑣𝑣1+𝑣𝑣2+⋯+𝑣𝑣𝑝𝑝=𝑛𝑛+1, 𝑣𝑣𝑖𝑖>0
𝜇𝜇1+⋯𝜇𝜇𝑝𝑝+1=𝑝𝑝−1, 𝜇𝜇𝑖𝑖≥0

𝑛𝑛+1

𝑝𝑝=1

 

𝐏𝐏𝐀𝐀𝟎𝟎 𝜀𝜀 = sum of eigenprojections 

Extracting 𝐀𝐀# from 𝐀𝐀−𝟏𝟏  



RBF-MQ in Polynomial Expression 

The process continued as: 

𝐀𝐀−𝟏𝟏 𝜀𝜀 = 𝐀𝐀# 𝜀𝜀 +
1
𝜀𝜀 𝐁𝐁

# 𝜀𝜀 +
1
𝜀𝜀

1
𝜀𝜀

1
𝜀𝜀 𝐁𝐁(𝜀𝜀)𝐏𝐏𝐁𝐁𝟎𝟎(𝜀𝜀)

#

 

𝐂𝐂 𝜀𝜀  

The Laurent series of 𝐀𝐀−𝟏𝟏 can then be express as: 

Until some stage where the next terms inside the bracket = null matrix 

𝐀𝐀−𝟏𝟏 𝜀𝜀 = ⋯+ 𝜀𝜀−2𝐂𝐂# 𝜀𝜀 + 𝜀𝜀−1𝐁𝐁# 𝜀𝜀 + 𝐀𝐀#(𝜀𝜀) 



RBF-MQ in Polynomial Expression 
 General procedure: 

 
Starts with 𝐀𝐀𝟎𝟎,𝐀𝐀𝟏𝟏,𝐀𝐀𝟐𝟐, … 
1) Compute pseudo inverse 𝐀𝐀#

𝟎𝟎 of 𝐀𝐀𝟎𝟎 
2) Compute 𝐏𝐏𝟎𝟎, the projection of 𝐀𝐀𝟎𝟎 into null space 
3) Compute 𝐒𝐒𝟎𝟎 = −𝐏𝐏𝟎𝟎, then 𝐒𝐒𝟐𝟐 = 𝐒𝐒𝟎𝟎2, 𝐒𝐒𝟑𝟑 = 𝐒𝐒𝟎𝟎3, … 
4) Compute 𝐀𝐀#

𝟏𝟏, 𝐀𝐀#
𝟐𝟐, 𝐀𝐀#

𝟑𝟑 … 
 

5) Compute for next letter, 𝐁𝐁𝟎𝟎,𝐁𝐁𝟏𝟏,𝐁𝐁𝟐𝟐, … 
6) The process (1),(2),(3),(4) are repeated by changing all 𝐀𝐀𝐤𝐤 with 

respective 𝐁𝐁𝐤𝐤  
 

7) Compute for next letter  𝐂𝐂𝟎𝟎,𝐂𝐂𝟏𝟏,𝐂𝐂𝟐𝟐, … if needed (depends on the 
order of singularity) 

 



RBF-MQ in Polynomial Expression 
 The inverse can also be written in the form below by 

grouping the terms with the same power of 𝜀𝜀 

𝐀𝐀−𝟏𝟏 𝜀𝜀 = � 𝜀𝜀𝑘𝑘𝐇𝐇𝐤𝐤

∞

𝑘𝑘=−𝑠𝑠

 

 𝐻𝐻𝑘𝑘  can be expressed in terms of 𝐴𝐴# , 𝐵𝐵# , 𝐶𝐶# … For 
example, for the singularity order s=2, the singular terms: 

𝐇𝐇−𝟐𝟐 = 𝐂𝐂𝟎𝟎# 
𝐇𝐇−𝟏𝟏 = 𝐁𝐁𝟎𝟎# + 𝐂𝐂𝟏𝟏# 

𝐇𝐇𝟎𝟎 = 𝐀𝐀𝟎𝟎# + 𝐁𝐁𝟏𝟏# + 𝐂𝐂𝟐𝟐# 



RBF-MQ in Polynomial Form 
 The RBF-MQ interpolating function 𝑠𝑠 𝑥𝑥,𝑦𝑦, 𝜀𝜀  can be 

expresses as 
 
𝑠𝑠 𝑥𝑥,𝑦𝑦, 𝜀𝜀

= 𝜀𝜀−𝑠𝑠𝑃𝑃−𝑠𝑠 𝑥𝑥,𝑦𝑦 + 𝜀𝜀−𝑠𝑠+1𝑃𝑃−𝑠𝑠+1 𝑥𝑥,𝑦𝑦 + ⋯
+ 𝜀𝜀0𝑃𝑃0 𝑥𝑥, 𝑦𝑦 + 𝜀𝜀1𝑃𝑃1 𝑥𝑥,𝑦𝑦 + 𝜀𝜀2𝑃𝑃2 𝑥𝑥,𝑦𝑦 + ⋯ 

 
 Often, the singular parts 𝜀𝜀−ve𝑃𝑃−ve 𝑥𝑥,𝑦𝑦  are zero 

regardless of (𝑥𝑥,𝑦𝑦) 
 

𝑠𝑠 𝑥𝑥,𝑦𝑦, 𝜀𝜀 = 𝑃𝑃0 𝑥𝑥,𝑦𝑦 + 𝜀𝜀𝑃𝑃1 𝑥𝑥,𝑦𝑦 + 𝜀𝜀2𝑃𝑃2 𝑥𝑥,𝑦𝑦 + ⋯ 



RBF-MQ in Polynomial Expression 
Four nodes RBF-MQ in polynomial expression up to 𝜀𝜀2 
 

𝑠𝑠 𝑥𝑥, 𝑦𝑦, 𝜀𝜀 = 𝑃𝑃0 𝑥𝑥,𝑦𝑦 + 𝜀𝜀𝑃𝑃1 𝑥𝑥,𝑦𝑦 + 𝜀𝜀2𝑃𝑃2 𝑥𝑥, 𝑦𝑦  
 
 
 
 
 
 
 
 

𝑃𝑃0 𝑥𝑥, 𝑦𝑦 =
1
4 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 +

1
4 −𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4 𝑥𝑥 +

1
4 −𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 𝑦𝑦

+
1
4 𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4 𝑥𝑥𝑦𝑦 

 

𝑃𝑃1 𝑥𝑥,𝑦𝑦 =
1
8 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 𝑥𝑥2 + 𝑦𝑦2 − 2 +

1
8 𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4 6𝑥𝑥𝑦𝑦 − 3(𝑥𝑥3𝑦𝑦 + 𝑥𝑥𝑦𝑦3)

+
1
8 𝑓𝑓1 − 𝑓𝑓3 𝑥𝑥3 + 𝑦𝑦3 + 𝑥𝑥2𝑦𝑦 + 𝑥𝑥𝑦𝑦2 − 2(𝑥𝑥 + 𝑦𝑦)

+
1
8 𝑓𝑓2 − 𝑓𝑓4 − 𝑥𝑥3 − 𝑦𝑦3 + 𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦2 + 2(𝑥𝑥 − 𝑦𝑦)  

 

 

1 2 

3 4 

(-1,-1) (1,-1) 

(1, 1) (-1, 1) 



RBF-MQ in Polynomial Expression 
Four nodes RBF-MQ in polynomial expression up to 𝜀𝜀2 
 

𝑃𝑃2 𝑥𝑥, 𝑦𝑦 =
1

32 𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4 15 𝑥𝑥5𝑦𝑦 + 𝑥𝑥𝑦𝑦5 + 8 𝑥𝑥3𝑦𝑦 + 𝑥𝑥𝑦𝑦3 + 30𝑥𝑥3𝑦𝑦3 − 76𝑥𝑥𝑦𝑦

+
1

32 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 − 𝑥𝑥4 + 𝑦𝑦4 − 16 𝑥𝑥2 + 𝑦𝑦2 − 2𝑥𝑥2𝑦𝑦2 + 36

+
1

32 𝑓𝑓1 − 𝑓𝑓3 [−3 𝑥𝑥5 + 𝑦𝑦5 − 8 𝑥𝑥3 + 𝑦𝑦3 + 36 𝑥𝑥 + 𝑦𝑦 − 3 𝑥𝑥4𝑦𝑦 + 𝑥𝑥𝑦𝑦4 − 6 𝑥𝑥3𝑦𝑦2 + 𝑥𝑥2𝑦𝑦3

− 16 𝑥𝑥2𝑦𝑦 + 𝑥𝑥𝑦𝑦2 ]

+
1

32 𝑓𝑓2 − 𝑓𝑓4 [3 𝑥𝑥5 − 𝑦𝑦5 + 8 𝑥𝑥3 − 𝑦𝑦3 − 36 𝑥𝑥 − 𝑦𝑦 − 3 𝑥𝑥4𝑦𝑦 − 𝑥𝑥𝑦𝑦4 + 6 𝑥𝑥3𝑦𝑦2 − 𝑥𝑥2𝑦𝑦3

− 16 𝑥𝑥2𝑦𝑦 − 𝑥𝑥𝑦𝑦2 ] 
 

Four nodes RBF-MQ converged to bilinear function when 𝜀𝜀 → 0 



Optimum Shape Parameter 𝜀𝜀  
 RBF-MQ in polynomial form allow the interpolation with 

any value of 𝜀𝜀. 
 However the for 𝜀𝜀, the optimum value is varies case by 

case, or problem dependent. 

 It is yet any sound approach to predict optimum 𝜀𝜀 , 
although it is found that the optimum value is often small. 

 



Optimum Shape Parameter 𝜀𝜀  
 Example: test function  

𝑓𝑓 𝑥𝑥, 𝑦𝑦 =
25

25 + (𝑥𝑥 − 0.2)2+2𝑦𝑦2
               (𝑥𝑥, 𝑦𝑦) ∈ (0,1) 

 
 Discretized with 9x9 grid nodes with the discrete value 

of 𝑓𝑓 𝑥𝑥,𝑦𝑦  known at each nodal point. 
 

 Interpolating 𝑓𝑓 𝑥𝑥,𝑦𝑦  to the point of interest 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 =
0.3125,0.3125  

 The nearest four nodal points are 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧 = [(0.25,0.25), 
(0.375,0.25), (0.375,0.375), (0.25,0.375)], with discrete 
value of 𝐟𝐟𝐧𝐧= [0.994926, 0.993814, 0.987679, 0.988777] 
 



Optimum Shape Parameter 𝜀𝜀  

𝑥𝑥 = 0.25 𝑥𝑥 = 0.50 

𝑥𝑥 = 0.375 𝑥𝑥 = 0.125 𝑥𝑥 = 0.625 

𝑦𝑦 = 0.125 

𝑦𝑦 = 0.375 

𝑦𝑦 = 0.625 

𝑦𝑦 = 0.25 

𝑦𝑦 = 0.50 

(𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧) 

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) 

𝐟𝐟𝐧𝐧= [0.994926, 0.993814, 0.987679, 0.988777] 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 0.9913 − 0.9913𝜀𝜀 + 4.4608𝜀𝜀2 



Optimum Shape Parameter 𝜀𝜀  

P0(x, y) 

P1(x, y) 

P2(x, y) 

 Distribution of 𝑃𝑃0 𝑥𝑥,𝑦𝑦 ,𝑃𝑃1 𝑥𝑥,𝑦𝑦 , 𝑃𝑃2 𝑥𝑥,𝑦𝑦  
 

𝑃𝑃0 𝑥𝑥, 𝑦𝑦  𝑃𝑃1 𝑥𝑥,𝑦𝑦  𝑃𝑃2 𝑥𝑥, 𝑦𝑦   
 The RBF-MQ  interpolating function is hence the 

correction of “base function” 𝑃𝑃0 𝑥𝑥,𝑦𝑦   using the higher 
order polynomial functions 𝑃𝑃1 𝑥𝑥,𝑦𝑦  and 𝑃𝑃2 𝑥𝑥,𝑦𝑦 , with 𝜀𝜀 
as the weighting parameter. 



Optimum Shape Parameter 𝜀𝜀  
 Since the distribution of 𝑓𝑓 𝑥𝑥,𝑦𝑦  is different across the 

domain, the correction needed at different region is 
different. 

 In other words, the optimum value of  𝜀𝜀  across the 
domain is varies depends on the distribution of 𝑓𝑓 𝑥𝑥,𝑦𝑦 .  

 To determine the optimum value of 𝜀𝜀 , the local 
distribution of 𝑓𝑓 𝑥𝑥,𝑦𝑦  is evaluate using nodes at the 
outer ring of the interpolation domain,  



Optimum Shape Parameter 𝜀𝜀  
 Taking additional surrounding nodes: 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋 = [(0.25,0.25), 

(0.5,0.25), (0.5,0.5), (0.25,0.5)] to enclose the nodes 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  
and 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  

 An enclosed node (𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡) is use to predict the 𝜀𝜀 using nodes 
𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  

𝑥𝑥 = 0.25 𝑥𝑥 = 0.50 

𝑥𝑥 = 0.375 𝑥𝑥 = 0.125 𝑥𝑥 = 0.625 

𝑦𝑦 = 0.125 

𝑦𝑦 = 0.375 

𝑦𝑦 = 0.625 

𝑦𝑦 = 0.25 

𝑦𝑦 = 0.50 

(𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧) 

𝑥𝑥 = 0.25 𝑥𝑥 = 0.50 

𝑥𝑥 = 0.375 𝑥𝑥 = 0.125 𝑥𝑥 = 0.625 

𝑦𝑦 = 0.125 

𝑦𝑦 = 0.375 

𝑦𝑦 = 0.625 

𝑥𝑥 = 0.25 

𝑦𝑦 = 0.50 

(𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋) 

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) 



Optimum Shape Parameter 𝜀𝜀  
 Interpolating function at (𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡) using nodes 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋 : 

 

𝑠𝑠𝑟𝑟 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝜀𝜀 = 0.9859 − 0.9859𝜀𝜀 + 4.4366𝜀𝜀2 
 Discrete value of at 𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 = 0.987679.  

 Optimum 𝜀𝜀:  𝑠𝑠𝑟𝑟 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝜀𝜀 = 𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡  
 

 Since the interpolating function 𝑠𝑠𝑟𝑟 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝜀𝜀  is a second 
order polynomial of 𝜀𝜀, the value of optimum 𝜀𝜀 can be 
computed by solving for root of polynomial. 
 

 𝜀𝜀1 = 0.224, 𝜀𝜀2 = −1.78 × 10−3 



Optimum Shape Parameter 𝜀𝜀  
 The 𝜀𝜀 with smaller absolute value is chosen in order to 

reduce the error arisen from the numerical cancellation 
between the correction functions 𝜀𝜀𝑃𝑃1 𝑥𝑥,𝑦𝑦  
and  𝜀𝜀2𝑃𝑃2 𝑥𝑥,𝑦𝑦 . 

 In present implementation, the use of negative value of 𝜀𝜀 
is permissible as 𝜀𝜀 is merely treated as parameter to 
control the weights of  𝑃𝑃1 𝑥𝑥,𝑦𝑦  and 𝑃𝑃2 𝑥𝑥,𝑦𝑦 . 

 Hence, 𝜀𝜀𝑜𝑜𝑝𝑝𝑡𝑡 =  −1.78 × 10−3  for interpolation from 
𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  to 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 . 



Optimum Shape Parameter 𝜀𝜀  
 Previous steps provided some information regarding the 

discrepancy between the base function 𝑃𝑃0 (bilinear for 
four nodes interpolation) and the function to be 
interpolated 𝑓𝑓(𝑥𝑥,𝑦𝑦). 

 Since 𝑓𝑓(𝑥𝑥,𝑦𝑦)  is a smooth function, the predictions 
obtained by using nodal points 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  and 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  have 
continuous and similar distributions. 

 However, the magnitude of correction in 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  is less 
than that of 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  due to the smaller nodal distance, 
which would result in a smaller difference between the 
maximum and the minimum values of 𝑓𝑓 𝑥𝑥,𝑦𝑦  among the 
nodal points 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  



Optimum Shape Parameter 𝜀𝜀  
 The value of 𝜀𝜀𝑜𝑜𝑝𝑝𝑡𝑡  found using 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  is scaled by 

𝑟𝑟(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)/𝑟𝑟(𝑥𝑥𝑟𝑟,𝑦𝑦𝑟𝑟)
2
 , in which is equivalent radius of the 

area bounded by the nodal point set 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  and 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋 . 
 In this example, nodes 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  and 𝐱𝐱𝐋𝐋, 𝐲𝐲𝐋𝐋  are lying on 

uniform grid, the scaling factor = 0.25 

 Predicted shape parameter for nodes 𝐱𝐱𝐧𝐧, 𝐲𝐲𝐧𝐧  at 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  
is 𝜀𝜀 = −4.5404 × 10−4. 
 



Optimum Shape Parameter 𝜀𝜀  
 Interpolating function at 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 

 

𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 0.9913 − 0.9913𝜀𝜀 + 4.4608𝜀𝜀2  
 With 𝜀𝜀 = −4.5404 × 10−4 , predicted solution 
𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ≈ 𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 = 0.991741. (Error = 9.02875 ×
10−6) 

 Exact 𝜀𝜀 that makes 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝑠𝑠 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝜀𝜀 :  
 

𝜀𝜀 = −4.4497 × 10−4 
 Discrepancy with predicted 𝜀𝜀 is less than 0.1% 
 



Optimum Shape Parameter 𝜀𝜀  

Predicted 𝜀𝜀 Exact 𝜀𝜀 Exact 𝜀𝜀 − predicted 𝜀𝜀 

Predicted 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  𝑓𝑓𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑡𝑡 − predicted 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  



Optimum Shape Parameter 𝜀𝜀  
 Improvements from base function (bilinear) 

 
 
 
 
 
 
 
 

L2 norm =  
∑ (𝑓𝑓𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑡𝑡 − 𝑓𝑓𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑒𝑒)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  



Optimum Shape Parameter 𝜀𝜀  
 Other test function 

 
 
 
 
 
 
 
 
 

𝑓𝑓1 𝑥𝑥,𝑦𝑦 = 1 + 0.04( 𝑥𝑥 − 0.5 2 + 𝑦𝑦 − 1 2) 

𝛼𝛼 = 0 𝛼𝛼 = 0.2 𝛼𝛼 = 0.8 



Optimum Shape Parameter 𝜀𝜀  
 Other test function 

 
 
 
 
 
 
 
 
 

𝑓𝑓3 𝑥𝑥,𝑦𝑦 = 0.25 𝑥𝑥3 + 𝑦𝑦3 + 0.1 𝑥𝑥2𝑦𝑦 + 0.2 𝑥𝑥𝑦𝑦2 + 0.3(𝑥𝑥2) 

𝛼𝛼 = 0 𝛼𝛼 = 0.2 𝛼𝛼 = 0.8 



Mass-Preserving Interpolation 
 Motivation: 

- The continuity constraint satisfied on Eulerian grids may be 
lost after the velocity update on Lagrangian particles. 

- Conventional scalar interpolation scheme does not preserve 
continuity constraint. 

- The interpolation scheme with mass/continuity preserving 
property is applied to transfer the velocity from Eulerian grids 
to Lagrangian particles. 



Mass-Preserving Interpolation 
 A divergence-free RBF kernel can be defined from scalar 

RBF via: 
 

𝛗𝛗 𝐱𝐱 = −𝛻𝛻2𝐈𝐈 + 𝛻𝛻𝛻𝛻𝑇𝑇 ∅(𝐱𝐱) 
 
 
 

 The operator −𝛻𝛻2𝐈𝐈 + 𝛻𝛻𝛻𝛻𝑇𝑇  transforms the scalar BRF 
kernel ∅(𝐱𝐱) to the vector RBF kernel 𝜑𝜑 𝐱𝐱 . 

∅(𝐱𝐱) : Scalar RBF kernel chosen  
𝐈𝐈 : Identity matrix 

(7) 



Mass-Preserving Interpolation 
 For a multiquadric RBF kernel, the transformation to divergence-free 

vector RBF is: 

 

𝛗𝛗 𝐱𝐱 =
𝜑𝜑11 𝜑𝜑12
𝜑𝜑21 𝜑𝜑22 =

𝜀𝜀2𝑦𝑦2

( 1 + 𝜀𝜀𝑟𝑟2)3
−

𝜀𝜀
1 + 𝜀𝜀𝑟𝑟2

−
𝜀𝜀2𝑥𝑥𝑦𝑦

( 1 + 𝜀𝜀𝑟𝑟2)3

−
𝜀𝜀2𝑥𝑥𝑦𝑦

( 1 + 𝜀𝜀𝑟𝑟2)3
𝜀𝜀2𝑥𝑥2

( 1 + 𝜀𝜀𝑟𝑟2)3
−

𝜀𝜀
1 + 𝜀𝜀𝑟𝑟2

 

 

 The interpolating function 𝐬𝐬 𝐱𝐱  is an interpolating vector. Vector 𝐬𝐬 𝐱𝐱  is 
always divergence-free regardless of particle position 𝐱𝐱. 
 

 

 𝐬𝐬(𝐱𝐱) = 𝑢𝑢(𝐱𝐱)
𝑣𝑣(𝐱𝐱) = �𝛂𝛂𝐢𝐢𝛗𝛗(𝐱𝐱 − 𝐱𝐱𝐢𝐢)

𝑁𝑁

𝑖𝑖=1

 

(8) 

(9) 



Mass-Preserving Interpolation 
 Same procedure is applied to change the interpolating 

functions into polynomial form  
 

𝐬𝐬 𝐱𝐱 = 𝑢𝑢 𝐱𝐱, 𝜀𝜀
𝑣𝑣 𝐱𝐱, 𝜀𝜀 = 𝑃𝑃0 𝐱𝐱 + 𝜀𝜀𝑃𝑃1 𝐱𝐱 + 𝜀𝜀2𝑃𝑃2(𝐱𝐱)

𝑄𝑄0 𝐱𝐱 + 𝜀𝜀𝑄𝑄1 𝐱𝐱 + 𝜀𝜀2𝑄𝑄2(𝐱𝐱)
 


𝑑𝑑𝑃𝑃0 𝐱𝐱
𝑑𝑑𝑥𝑥

+ 𝑑𝑑𝑄𝑄0 𝐱𝐱
𝑑𝑑𝑦𝑦

= 0, 𝑑𝑑𝑃𝑃1 𝐱𝐱
𝑑𝑑𝑥𝑥

+ 𝑑𝑑𝑄𝑄1 𝐱𝐱
𝑑𝑑𝑦𝑦

= 0,𝑑𝑑𝑃𝑃2 𝐱𝐱
𝑑𝑑𝑥𝑥

+ 𝑑𝑑𝑄𝑄2 𝐱𝐱
𝑑𝑑𝑦𝑦

= 0 

 Each vector component may have their own optimum 𝜀𝜀. 
 Present implementation:  𝜀𝜀  with smaller magnitude is 

chosen. 
 



Results 
 Validation Studies 
 - Couette Flow 
 - Planar Poiseuille Flow 
 - Developing Laminar Flow 

 

 Verification Studies 
 - Lid Driven Cavity Flow 
 - Backward Facing Step Flow 



Results: Validation Studies 
 Couette Flow 

 
U 

Periodic BC 

Uout 

Uin =Uout 

Periodic BC 

H =  5 ∆𝑥𝑥 = 5/50, 5/100 

L =  1 ∆𝑦𝑦 = 1/10, 1/20 

U =  1.0 ∆𝑡𝑡 = 0.05 

𝑅𝑅𝑅𝑅 =  100, 1000 

L 

H 



Results: Validation Studies 
 Couette Flow 
- Re 100:  Velocity contour and particles distribution 

 

Near inflow 



Results: Validation Studies 
 Couette Flow 
- Normalized velocity profile 

 



Results: Validation Studies 
 Planar Poiseuille Flow 

 

Periodic BC 

Uout Uin =Uout 

Periodic BC 

L 

H 𝐹𝐹𝑥𝑥 

H =  5 ∆𝑥𝑥 = 5/100 

L =  1 ∆𝑦𝑦 = 1/20 

U =  1.0 ∆𝑡𝑡 = 0.05 

𝜌𝜌 =  1.0 

𝜇𝜇 =  0.1, 0.01  
( Re 12.5, 1250 ) 



Results: Validation Studies 
 Planar Poiseuille Flow 
- Normalized velocity profile 



Results: Validation Studies 

 Developing Laminar Flow 

Uniform inlet 𝑈𝑈0=0.1 
Fully developed 
profile at outlet 

𝐻𝐻 = 0.01 

𝐿𝐿 

𝑈𝑈𝑚𝑚𝑒𝑒𝑥𝑥 

For Laminar flow, the entry length, 𝑖𝑖𝑠𝑠 𝐿𝐿ℎ = 0.05 𝑅𝑅𝑅𝑅 𝐻𝐻 

To ensure flow to be fully developed, 𝐿𝐿 = 2𝐿𝐿ℎ is used 



Results: Validation Studies 

 Developing Laminar Flow 

Re 100: U, V velocity contours and particle distribution 

Outflow U velocity profile 



Results: Validation Studies 

 Developing Laminar Flow 

Re 200: U, V velocity contours and particle distribution 

Outflow U velocity profile 



Results: Verification Studies 
 Lid Driven Cavity Flow 

𝑈𝑈0 = 1.0 

L = 1.0 

L = 1.0 

∆𝑥𝑥 = 0.02 

∆𝑦𝑦 = 0.02 

∆𝑡𝑡 = 0.01 



Results: Verification Studies 

 Lid Driven Cavity Flow 

Re 100 Re 1000 Re 3200 Re 400 

Re 100 Re 1000 Re 3200 Re 400 

U 

V 

[6] U. Ghia, K.N. Ghia, amd C.T. Shin, High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid 
Method, J. Comput. Phys., vol. 48, pp. 387-411, 1982. 

Present 

Ghia et al. [6] 

Present 

Ghia et al. [6] 



Results: Verification Studies 
 Backward Facing Step Flow  

(Inflow: parabolic profile)  

ℎ𝑆𝑆𝑇𝑇𝑆𝑆𝑃𝑃/ℎ𝐼𝐼𝑁𝑁 = 0.9423 

Re 100 389 

𝐿𝐿𝑓𝑓 16ℎ𝐼𝐼𝑁𝑁 25ℎ𝐼𝐼𝑁𝑁 

𝑁𝑁𝑥𝑥 210 300 

𝑁𝑁𝑦𝑦 20 20 

∆𝑡𝑡 0.02 0.02 



Results: Verification Studies 
 Backward Facing Step Flow 
Re 100  

 



Results: Verification Studies 
 Backward Facing Step Flow  
Re 100 

 present 
Armaly et al. [7] 

[7] B.F. Armaly, F. Durst, J.C. F. Pereira, B. Schoung, Experimental and theoretical investigation of backward-facing step flow, J. 
Fluid. Mech., vol. 127, 473-496, 1983 

0.00 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.76 𝑥𝑥/ℎ𝑆𝑆𝑇𝑇𝑆𝑆𝑃𝑃 

𝑢𝑢 = 0 𝑢𝑢 = 1.5 



0.00 2.55 3.06 3.57 4.18 4.80 5.41 6.12 7.14 𝑥𝑥/ℎ𝑆𝑆𝑇𝑇𝑆𝑆𝑃𝑃 

𝑢𝑢 = 0 𝑢𝑢 = 1.5 

Results: Verification Studies 
 Backward Facing Step Flow  
Re 389 

 present 
Armaly et al. [7] 

[7] B.F. Armaly, F. Durst, J.C. F. Pereira, B. Schoung, Experimental and theoretical investigation of backward-facing step flow, J. 
Fluid. Mech., vol. 127, 473-496, 1983 



Conclusion 
 The shape parameter 𝜀𝜀 of RBF-MQ is to control the 

correction to the base function. 
  The optimum value of 𝜀𝜀 is problem dependent, hence it is 

subjected to the local distribution of the function to be 
interpolated. 

 In present implementation, the value of 𝜀𝜀 is predicted 
using the surrounding information of the interpolation 
domain to achieves accurate approximation. It is found 
that the interpolation accuracy, as well as rate of 
convergence is improved with the appropriate  𝜀𝜀.  
 



Thank you 
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