A COUPLED 1D AND 2D SPH-SWES MODEL FOR OPEN CHANNEL FLOWS IN COMPLEX CHANNEL GEOMETRIES

SPEAKER: DR. KAO-HUA CHANG (張高華) 2016.12.01

ACKNOWLEDGEMENT:

PROF. TONY WEN-HANN SHEU (許文翰 教授);

PROF. TSANG-JUNG CHANG (張倉榮 教授)

OUTLINE

- 1. Motivation
- 2. SPH-SWEs Model
- 3. Boundary Treatments
- 4. Results and Discussion
- 5. Summary

З

In hydraulic engineering, river flooding (overbank flow and mud flow) and river pollution are both concerned problems.
 How to predict discharge, depth and concentration is a key issue.

Tamsui River

Keelung River

New Taipel City

Dahan Creek∖

Taipei City

Xindian Creek

lfnage © 2016 TerraVietñes Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2016 DigitalGlob9 Image © 2016 DigitalGlob9

Google Earth

For large river systems. 1D hydrodynamic models are extensively used due to their efficiency. Besides, 2D hydrodynamic models are also adopted to enhance the accuracy.

Goal

Combining the efficiency of 1D model and the accuracy of 2D model.

 \bigcirc

SHALLOW WATER EQUATIONS

3D Navier-Stokes equations

Density $\rho = \rho_w$

Mass $m = \rho V = \rho_w (\Delta x_0)^3$

Mass $m = \rho V = \rho_w A \Delta x_0$

Pressure is assumed to be hydrostatic

1D shallow water equations $\frac{DA}{Dt} = -A \frac{\partial u}{\partial x}$ $\frac{DQ}{Dt} = -Q \frac{\partial u}{\partial x} - gA \frac{\partial (d_w + z_b)}{\partial x} - gAS_f$

 $\mathbf{P} = \gamma d_w = \rho g d_w = \rho c^2,$

where *c* is the celerity. $c = \sqrt{gd_w}$

2D shallow water equations

$$\frac{\mathrm{D}d_{w}}{\mathrm{D}t} = -d_{w}\nabla\cdot\vec{U}$$

$$\frac{\mathrm{D}\bar{U}}{\mathrm{D}t} = -g\nabla\left(d_w + z_b\right) - g\bar{S}_f$$

In the above, $\vec{U} = (u, v), \ \nabla = \frac{\partial}{\partial x}\vec{x} + \frac{\partial}{\partial y}\vec{y}, \ \frac{D()}{Dt} = \frac{\partial()}{\partial t} + \vec{U} \cdot \nabla()$

A is the wetted cross-section area, d_w is the water deoth, Q is the discharge, U is the velocity, z_b is the ground elevation, S_f is the friction slope and g is the gravity acceleration.

SMOOTHED PARTICLE HYDRODYNAMICS

Kernel Function (ω)

(1) The integral of a kernel function within its compact domain should be equal to one.

$$\int_{\Omega} \omega(r_{ij}, h_i) \mathrm{d}V = 1$$

(2) As the smoothing length *h* approaching zero, the kernel function will become a Dirac delta function. $\lim_{h_i \to 0} \omega(r_{ij}, h_i) = \delta(r_{ij})$

(3) The kernel function should be compactly where *s* = - supported.

$$\omega(r_{ij}, h_i) = 0$$
 when $r_{ij} > \kappa h_i$

(4) The kernel function is assumed to be symmetric.

$$\omega(r_{ij}, h_i) = \omega(r_{ji}, h_i)$$
$$\nabla_i \omega(r_{ij}, h_i) = -\nabla_j \omega(r_{ij}, h_i)$$

$$\boldsymbol{\omega}(\boldsymbol{s},\boldsymbol{h}) = \frac{3}{4\boldsymbol{h}} \begin{cases} (1+2\boldsymbol{s})(1-\frac{\boldsymbol{s}}{2})^4 & 0 \le \boldsymbol{s} \le 2\\ 0 & \boldsymbol{s} > 2 \end{cases}$$

Summation operator

$$\phi_{i} = \int_{\Omega} \phi(\vec{r}) \,\delta(\vec{r}_{i} - \vec{r}) \,\mathrm{d}V$$
$$\langle \phi \rangle_{i} = \int \phi(\vec{r}) \,\omega(|\vec{r}_{i} - \vec{r}|, h) \,\mathrm{d}V$$

where *m* is the mass of a particle, ρ is the density of a particle, ω is the kernel function, *h* is the smoothing length and $\langle \phi \rangle_i$ denotes approximated ϕ_i .

O

$$= \sum_{j} \frac{m_{j}}{\rho_{j}} \phi_{j} \omega(r_{ij}, h_{i}) \quad \longleftarrow \text{ Discretization into particles}$$

Differential operator

$$\langle \nabla \phi \rangle_{i} = \int_{\Omega} \nabla \phi(\bar{r}) \omega(|\bar{r}_{i} - \bar{r}|, h) dV$$

$$= \int_{\Omega} \nabla \left[\phi(\bar{r}) \omega(|\bar{r}_{i} - \bar{r}|, h) \right] dV - \int_{\Omega} \phi(\bar{r}) \nabla \omega(|\bar{r}_{i} - \bar{r}|, h) dV$$

$$= \int_{\partial\Omega} \phi(\bar{r}) \omega(|\bar{r}_{i} - \bar{r}_{i}|, h) \bar{n} dS - \int_{\Omega} \phi(\bar{r}) \nabla \omega(|\bar{r}_{i} - \bar{r}|, h) dV$$

$$= -\int_{\Omega} \phi(\bar{r}) \nabla \omega(|\bar{r}_{i} - \bar{r}|, h) dV$$

$$= -\int_{\Omega} \phi(\bar{r}) \nabla \omega(|\bar{r}_{i} - \bar{r}|, h) dV$$

$$= \sum_{j} \frac{m_{j}}{\rho_{j}} \phi_{j} \nabla_{i} \omega(r_{ij}, h_{i})$$

$$Discretization into particles$$

Divergent operator in the asymmetric form

$$\nabla \cdot \vec{\phi} = \frac{1}{\rho} \left[\nabla \cdot \left(\rho \vec{\phi} \right) - \vec{\phi} \cdot \nabla \rho \right]$$

Using the differential operator $\langle \nabla \phi \rangle_i = \sum_i \frac{m_j}{\rho_i} \phi_j \nabla_i \omega_{ij}$

$$\left\langle \nabla \cdot \vec{\phi} \right\rangle_{i} = \frac{1}{\rho_{i}} \sum_{j} m_{j} \left(\vec{\phi}_{i} - \vec{\phi}_{j} \right) \cdot \nabla_{i} \omega_{ij}$$

Gradient operator in the symmetric form

$$\nabla \phi = \rho \left[\nabla \left(\frac{\phi}{\rho} \right) + \frac{\phi}{\rho^2} \nabla \rho \right]$$

Using the differential operator $\langle \nabla \phi \rangle_i = \sum_i \frac{m_j}{\rho_i} \phi_j \nabla_i \omega_{ij}$

$$\left\langle \nabla \phi \right\rangle_{i} = \rho_{i} \sum_{j} m_{j} \left(\frac{\phi_{i}}{\rho_{i}^{2}} + \frac{\phi_{j}}{\rho_{j}^{2}} \right) \nabla_{i} \omega_{ij}$$

Ref. 1) GR Liu, MB Liu, (2003). Smoothed particle hydrodynamics: A meshfree particle method, World Scientific, Singapore.

DIFFUSIVE TERMS

I. Artificial viscous term

 $\left(\frac{\mathrm{D}\vec{U}}{\mathrm{D}t}\right)_{i} = -g\sum_{j} m_{j} \frac{d_{w,i} + d_{w,j}}{d_{w,j}} \nabla_{i} \omega_{ij} - g\vec{S}_{f} + \sum_{j} v_{ij} V_{j} \left(\vec{U}_{i} - \vec{U}_{j}\right) \frac{\vec{r}_{ij} \cdot \nabla_{i} \omega_{ij}}{\left|\vec{r}_{ij}\right|^{2}}$ **Kinetic viscosity** $v_{ij} = \alpha h_{ij} c_{ij}$, where $h_{ij} = 0.5 \left(h_{i} + h_{j}\right)$, $c_{ij} = 0.5 \left(c_{i} + c_{j}\right)$, $\alpha = 0.2$.

2. Density diffusive term

$$\left(\frac{\mathrm{D}d_{w}}{\mathrm{D}t}\right)_{i} = \sum_{j} m_{j} \left(\vec{U}_{i} - \vec{U}_{j}\right) \cdot \nabla_{i} \omega_{ij} + \sum_{j} D_{ij} V_{j} \left(d_{w,i} - d_{w,j}\right) \frac{\vec{r}_{ij} \cdot \nabla_{i} \omega_{ij}}{\left|\vec{r}_{ij}\right|^{2}}$$
$$D_{ij} = \beta h_{ij} c_{ij}, \text{ where } h_{ij} = 0.5 \left(h_{i} + h_{j}\right), c_{ij} = 0.5 \left(c_{i} + c_{j}\right), \ \beta = 0.2.$$

Ref. 1) JJ Monaghan, Rep Prog Phys, 68: 1703-1759, 2005.
2) M Antuono et al., Comput Phys Commun, 183: 2570-2580, 2012.

TIME MARCHING METHOD

Modified Verlet method

Ref. 1) D Molteni, A Colagrossi, Comput Phys Commun, 180: 861-872, 2009.

BOUNDARY TREATMENTS

 \bigcirc

WALL BOUNDARY

Repellent particle

Dummy particle

D

0

0

0

0

0

0

Ref. 1) JJ Monaghan, A Kos, J Waterw Port C-ASCE, 125: 145-154, 1999.

Ref. 1) S Adami et al., J Comput Phys, 231: 7057-7075, 2012. 2) B Bouscasse et al., J Fluid Struct, 42: 112-129, 2013.

15

wall boundary

2) B Bouscasse et al., J Fluid Struct, 42: 112-129, 2013.

Impermeable boundary condition

$$\frac{d\bar{u}_{d}}{dt} \cdot \bar{N} = \left[-g\nabla \left(d_{w} + z_{b} \right) - g\bar{S}_{f} \right] \cdot \bar{N} = 0$$

$$\Rightarrow \nabla d_{w} \cdot \bar{N} = \left(-\nabla z_{b} - \bar{S}_{f} \right) \cdot \bar{N} \Rightarrow \frac{d_{w,j \in p} - d_{w,i \in d}}{l} = \left[\sum_{j \in f} V_{j} \left(-\nabla z_{b,j} - \bar{S}_{f,j} \right) \tilde{\omega}_{ij} \right] \cdot \bar{N}_{ij}$$

$$\Rightarrow d_{w,i \in d} = \sum_{j \in f} V_{j} \left[d_{w,j} + \left(-\nabla z_{b,j} - \bar{S}_{f,j} \right) \cdot \bar{N}_{ij} \right] \tilde{\omega}_{ij}$$
Ref. 1) S Adami et al., J Comput Phys, 231: 7057-7075, 2012.

18

2) B Bouscasse et al., J Fluid Struct, 42: 112-129, 2013.

IN/OUT-FLOW BOUNDARY

Ref. 1) R Vacondio et al., Int J Numer Meth Fl, 69: 226-253, 2012. 2) TJ Chang, KH Chang, J Hydraul Eng-ASCE, 139:1142-1149, 2013.

Characteristics equations

$$u_{S} = u_{R} - \frac{g}{c_{R}} (d_{w,S} - d_{w,R}) + g (S_{0,R} - S_{f,R}) \Delta t$$

$$C^{+}: \frac{x_{S} - x_{R}}{\Delta t} = u_{R} + c_{R}$$

$$u_{P} = u_{L} + \frac{g}{c_{L}} (d_{w,P} - d_{w,L}) + g (S_{0,L} - S_{f,L}) \Delta t$$

$$C^{-}: \frac{x_{P} - x_{L}}{\Delta t} = u_{L} + c_{L}$$

Subcritical flows at outflow boundaries

$$Q_{S} = A_{S}u_{S} = A_{S}\left[u_{R} - \frac{g}{c_{R}}\left(d_{w,S} - d_{w,R}\right) + g\left(S_{0,R} - S_{f,R}\right)\Delta t\right]$$

 $\Box \text{ Subcritical flows at inflow boundaries}$ $Q_{P} = A_{P}u_{P} = A_{P}\left[u_{L} + \frac{g}{c_{L}}\left(d_{w,P} - d_{w,L}\right) + g\left(S_{0,L} - S_{f,L}\right)\Delta t\right]$ $f(d_{w,P}) = A_{P}\left[u_{L} + \frac{g}{c_{L}}\left(d_{w,P} - d_{w,L}\right) + g\left(S_{0,L} - S_{f,L}\right)\Delta t\right] - Q_{P} = 0$

20

Ref. 1) TJ Chang, KH Chang, J Hydraul Eng-ASCE, 139:1142-1149, 2013.

 \bigcirc

CASE 1 – 180° BENDING CHANNEL

- 1. $d_w/B << 1$ (=0.075 in this case)
- 2. No slip boundary condition will produce flow separation from the inner sidewall which was not observed in the laboratory.

Comparison between 2D and 1D-2D SPH-SWEs models

 $\theta = 186^{\circ}$ $\theta = 143^{\circ}$ $\theta = 100^{\circ}$ $\theta = 100^{\circ}$

Comparison among measured data, FD model and 1D-2D SPH-SWEs model

 $\theta = 186^{\circ}$ 1.8 $\theta = 143^{\circ}$ ********** 0 Measured 1.6 FD model (Lien et al.) SPH-SWEs 1D-2D model 1.4 Ō $\theta = 100^{\circ}$ 1111111111111111 U/U 1.2 mmmmm 1.00.8 $\theta = 65^{\circ}$ 111111111111111 0.6 $\theta = 100^{\circ}$ $\theta = 35^{\circ}$ 0.4 0.2 0.4 0.6 0.8 0.0 $\theta = \mathbf{0}^{\circ}$ $(r-r_{0})/B$ 1.8 1.8 Measured 0 Measured 0 1.6 1.6 FD model (Lien et al.) FD model (Lien et al.) ----SPH-SWEs 1D-2D model SPH-SWEs 1D-2D model 1.4 1.4 U/U 1.2 U/U .2 0 0 \cap \sim 1.0 1.0 റ O 0.8 0.8 0 0 0.6 0.6 $\theta = 186^{\circ}$ $\theta = 143^{\circ}$ 0.4 L 0.0 0.4 <u></u>0.0 0.2 0.8 0.2 0.6 0.8 0.4 0.6 0.4 1.0 $(r-r_0)/B$ $(r-r_0)/B$

30

О

0

1.0

1.0

Comparison of mass conservation between 2D and 1D-2D SPH-SWEs models

 \triangleright

CASE II: 90 JUNCTION CHANNEL

2D domain

CASE II: 90 JUNCTION CHANNEL

1D-2D domain

		Case I (150s)			
0		No. of particles	CPU time (sec)	Speed up	
	2D model	15238	1.13E+05	-	
	1D-2D model	2D: 8999 1D: 296	6.90E+04	1.63	

Case II (130s)					
	No. of particles	CPU time (sec)	Speed up		
2D model	23472	6.83E+04	-		
1D-2D model	2D: 9792 1D: 416	2.34E+04	2.9		
		° 0 0) 0		

THANKS FOR LISTENING

