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Langevin and Fokker-Planck Analyses of Inhibited Molecular 
Passing Processes in Nanoporous Materials 



         spatial epidemic models: lattice differential     
equation analysis of wave and droplet solutions 

 
 
 

                                                                              formalism for 1D decay of islands 
                                                                              during coarsening on anisotropic surfaces 
 
 
 

•                                                               
            passing rate of particles in a narrow pore 
       Langevin and Fokker-Plank equation analysis 
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RESEARCH TOPICS 



• membrane 
 
 
 
 

 
• porous materials 

ion channel, gap junction: particles 
pass through the gated narrow 
channel in a high rate.    

zeolites, capillary, activated carbon:  
particles pass through the ungated 
narrow channel 

TRANSPORT IN POROUS MEDIA 



+ acetone 

amine-functionalized 
           MSN 

EXPERIMENT 

Effective pore diameter  
smaller than listed  
‘nominal’ value 

Deff ≈ 
  

1.3 to 
3+ nm 

Deff ≈ 1.3 

GOALS FOR MODELING: 
Analyze influence of “anomalous transport” in narrow pores on reactivity (yield). 
Specifically, we analyze the difficulty for reactants & products to pass each other. 
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Mesoporous silica 

~100 nm diameter MSN 

TEM 

CATALYTIC CONVERSION REACTION A→B WITH INHIBITED TRANSPORT 

p-nitrobenzaldehyde (PNB 
, 對硝基苯甲醛) 

4-(p-nitrophenyl)-4-hydroxy-2-butanone 
           (4對硝基苯基-4羥基-2丁酮) 

Liu, Chen, Lin, Evans, J. Chem. Phys. 132, 154102 (2010). 
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PROPOSED LANGEVIN ANALYSIS OF “RESTRICTED PASSING” 
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linear CM 
velocities 
 vi =dxi/dt 
 

 angular 
velocities 
     ωi 

mi d/dt vi = - γ⋅vi + random force;  Ii d/dt ωi + ωi × Ii ωi = - ς⋅ωi + random torque 

    (4 angles given axial symmetry + 
4 lateral translational degrees of freedom) 

DETERMINE HOW THE “EXCHANGE” OR “PASSING” PROBABILITY DEPENDS ON: 
(I) THE PORE DIAMETER (relative to the size of the reactant & product molecules) 

(II) THE SHAPE OF THE MOLECULES (e.g., alignment mediated-passing) 

PTST ~ Vmin/Vmax   

<Fi(t)>=0, <Fi(t)Fj(t’)>=Γδijδ(t-t’)  

Coffey, Kalmykov, Waldron, 
The Langevin Equation, World 
Scientific, Singapore, (2004). 
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(Pore radius)/(Sphere radius) = Rp/r = 2.5  

“RESTRICTED PASSING” of 2 SPHERES in a CYLINDRICAL PORE 
(David Ackerman) Langevin dynamics analysis 

δz=2r 

δz=4r δz= −2r 

         passing ~ (R-Rc)σ  
σ=2.5 in transition state theory (TST) 

σ=1.7 in Langevin (LE) analysis 
  

δz=z1-z2 

overdamped 



Examples of passing/separation 

Langevin trajectories for separating and passing events in a cylindrical 
pore with g/r=1, small (large) circles indicate initial (final) configurations. 

(a) two spheres, P=0.116;               (b) sphere and dumbbell, P=0.066. 

timestep = 0.0001 



Pore diameter 
2Rp = 4r+g 
, g = gap 

circle radius r 

Fokker-Planck equation analysis (high dim. diffusion eqn.) 

Fokker-Planck equation for overdamped LE 

d/dt P(x,t)= d/dx D d/dx P(x, t) 
       = D (d2/dy1

2 P(y1, y2, δ z, t)+ d2/dy2
2 P(y1, y2, δ z, t)+ 2 d2/d∆z2 P(y1, y2, δ z, t)) 

 
, where P(x,t): probability density at (x , t), x= (y1, y2, δz), D=Γ/2.  

geometry: {-2r≤ δz ≤4r, |y1|,|y2| ≤ r +g/2, (y1-y2)2+(δz)2 ≥ (2r)2 } 
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simplier circles too complicated 

δz 

8-dim 

0 

Fokker-Planck equation analysis (high dim. diffusion eqn.) 



TIME-DEPENDENT FPE:  
∂/∂t f(q1,q2,δz; t) = LFPE f(q1,q2,δz; t)   
with self-adjoint LFPE =  ∇ D ∇.  
 

STEADY-STATE FPE:  
0 = LFPE fss(q1,q2, δz)  + Vd

-1 δ(δz – 2r).  

f(δz,t) = ∫∫dq1dq2 f(q1,q2,δz; t).  
IC:  P(δz=2r,0)=δ(δz-2r);  
BC: P(δz= -2r or 4r,t)=0. 

P(L)=flux of steady-state @δz= -2r  
P(R)=flux of steady-state @δz= 4r  
passing rate : P(L)/ [P(L)+ P(R)] . 

Ptrap(L)=ʃ dt flux@δz= -2r 
Ptrap(R)=ʃ dt flux@δz= 4r  

passing rate : Ptrap(L)/ [Ptrap(L)+ Ptrap(R)] 

Examples of passing/separation 

-2r 2r 4r -2r 2r 4r -2r 2r 4r 

PASSING PROB.~ (g/r)1.4 

fss(δz) = ∫∫dq1dq2 fss(q1,q2,δz). 
BC: P(δz= -2r or 4r)=0 



-2r                       0                            2r                       4r 

Delta 
function 
input Trap 

 P=0 
Trap 
 P=0 

Determine steady-state fluxes at both ends which give passing + separation prob 

-2r                       0                            2r                       4r 

Trap 
 P=0 

P=const Assumes solution of  
above steady-state problem 
is roughly uniform for dz=2r 
In the region of small gaps 

dz 

dz 

Equivalent time-independent diffusion equation problem 



fss=0 at the ends is dark blue, and the maximum fss is dark maroon.  

g/r= 1/8 

g/r= 1/32 

Effective 2D FEM approximation  
qeff(δz) = ∫ … ∫ dq1 … dqn fss(q1, … ,qn,δz). 



(a) circle-circle in 2D: Langevin (LE) results; time-dependent Fokker-Planck equation (tFPE); 3D 
FEM; effective 2D FEM 
(b) spheres in 3D: LE; tFPE; effective 2D FEM  
 
Inset: two spheres (SS) versus sphere+dumbbell (SD); LE and 2D FEM 

Wang, Ackerman, Slowing, Evans, Phys. Rev. Lett. 113, 038301 (2014) 

Langevin and Fokker-Planck results 



C+C C+D C+E S+S S+D S+E 

σTST 2 2 3 2.5 2.5 4.5 

σLE 1.4 1.4 - 1.7 1.7 - 

C: circle; S: sphere; D: dumbbell; E: ellipsoid 

*molecular passing processes in narrow pores is not described by a 
simple TST, but rather depends on more global features of the confined 
geometry during the passing process. 
 
*we have provided a general picture for the behavior of molecular passing 
processes by Langevin dynamics and Fokker-Planck equation.  
 

table of passing propensity  

Summary 
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