Langevin and Fokker-Planck Analyses of Inhibited Molecular Passing Processes in Nanoporous Materials

<u>Chi-Jen Wang</u>, David M. Ackerman, Igor I. Slowing, Jim W. Evans

Departments of Mathematics, Physics & Astronomy, Mechanical Engineering, Chemistry, and Ames Laboratory (USDOE), Iowa State University School of Mathematics, Georgia Institute of Technology

NTU, 31 Dec 2014

RESEARCH TOPICS

spatial epidemic models: lattice differential equation analysis of wave and droplet solutions

Wang, Liu, Evans, Phys. Rev. E 85 (2012) 041109

formalism for 1D decay of islands during coarsening on anisotropic surfaces

Wang, Han, Walen, Russell, Thiel, Evans, Phys. Rev. B 88 (2013) 155434

passing rate of particles in a narrow pore Langevin and Fokker-Plank equation analysis

Wang, Ackerman, Slowing, Evans, Phys. Rev. Lett. 113, 038301 (2014)

membrane

ion channel, gap junction: particles pass through the gated narrow channel in a high rate.

porous materials

zeolites, capillary, activated carbon: particles pass through the ungated narrow channel

CATALYTIC CONVERSION REACTION A -> B WITH INHIBITED TRANSPORT

GOALS FOR MODELING:

Analyze influence of "anomalous transport" in narrow pores on reactivity (yield). Specifically, we analyze the difficulty for reactants & products to pass each other.

PROPOSED LANGEVIN ANALYSIS OF "RESTRICTED PASSING"

 $\mathbf{m}_{i} \operatorname{d/dt} \underline{\mathbf{v}}_{i} = -\underline{\mathbf{v}} \cdot \underline{\mathbf{v}}_{i} + \operatorname{random} \operatorname{force}; \quad \underline{\mathbf{l}}_{i} \operatorname{d/dt} \underline{\mathbf{\omega}}_{i} + \underline{\mathbf{\omega}}_{i} \times \underline{\mathbf{l}}_{i} \underline{\mathbf{\omega}}_{i} = -\underline{\mathbf{v}} \cdot \underline{\mathbf{\omega}}_{i} + \operatorname{random} \operatorname{torque}$ $< \mathbf{Fi}(t) > = \mathbf{0} \quad < \mathbf{Fi}(t) \mathbf{Fi}(t') > = \Gamma \delta_{ii} \delta(t_{i} - t')$

"RESTRICTED PASSING" of 2 SPHERES in a CYLINDRICAL PORE

(David Ackerman)

Langevin dynamics analysis overdamped

(Pore radius)/(Sphere radius) = Rp/r = 2.5

passing ~ (R-Rc)^σ σ =2.5 in transition state theory (TST) σ =1.7 in Langevin (LE) analysis

Examples of passing/separation

(a) two spheres, P=0.116;

(b) sphere and dumbbell, P=0.066.

Langevin trajectories for separating and passing events in a cylindrical pore with g/r=1, small (large) circles indicate initial (final) configurations.

Fokker-Planck equation analysis (high dim. diffusion eqn.)

 $\frac{d}{dt} P(\underline{x},t) = \frac{d}{d\underline{x}} \underbrace{D}_{(d^2/dy_1^2)} \frac{D}{P(y_1, y_2, \delta z, t)} + \frac{d^2/dy_2^2}{dy_2^2} P(y_1, y_2, \delta z, t) + \frac{2}{d^2/d\Delta z^2} P(y_1, y_2, \delta z, t)$

, where P(\underline{x} ,t): probability density at (\underline{x} , t), \underline{x} = (y_1 , y_2 , δz), D= $\Gamma/2$.

geometry: $\{-2r \le \delta z \le 4r, |y_1|, |y_2| \le r + g/2, (y_1 - y_2)^2 + (\delta z)^2 \ge (2r)^2 \}$

Examples of passing/separation

Equivalent time-independent diffusion equation problem

Determine steady-state fluxes at both ends which give passing + separation prob

Effective 2D FEM approximation

f^{ss}=0 at the ends is dark blue, and the maximum f^{ss} is dark maroon.

Langevin and Fokker-Planck results

(a) circle-circle in 2D: Langevin (LE) results; time-dependent Fokker-Planck equation (tFPE); 3D FEM; effective 2D FEM
(b) spheres in 3D: LE; tFPE; effective 2D FEM

Inset: two spheres (SS) versus sphere+dumbbell (SD); LE and 2D FEM

Wang, Ackerman, Slowing, Evans, Phys. Rev. Lett. 113, 038301 (2014)

Summary

table of passing propensity

	C+C	C+D	C+E	S+S	S+D	S+E
σ_{TST}	2	2	3	2.5	2.5	4.5
σ_{LE}	1.4	1.4	-	1.7	1.7	-

C: circle; S: sphere; D: dumbbell; E: ellipsoid

*molecular passing processes in narrow pores is not described by a simple TST, but rather depends on more global features of the confined geometry during the passing process.

*we have provided a general picture for the behavior of molecular passing processes by Langevin dynamics and Fokker-Planck equation.

ACKNOWLEDGMENTS

*Dr. Jim Evans, Dr. Da-Jiang Liu, Dr. Igor Slowing

*Dr. Xiaofang Guo, Dr. Yong Han, Dr. David Ackerman, Dr. Jing Wang

*Department of Mathematics

*Ames Laboratory, U.S. Department of Energy (USDOE)

Thank You !

Liu, Chen, Lin, Evans, J. Chem. Phys. 132, 154102 (2010). Ackerman, Wang, Evans, Phys. Rev. Lett. 108, 228301 (2012). Wang, Ackerman, Slowing, Evans, Phys. Rev. Lett. 113, 038301 (2014)