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TRANSPORT IN POROUS MEDIA

* membrane

e porous materials

1on channel, gap junction: particles
pass through the gated narrow
channel in a high rate.

zeolites, capillary, activated carbon:
particles pass through the ungated
narrow channel




CATALYTIC CONVERSION REACTION A—B WITH INHIBITED TRANSPORT
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Liu, Chen, Lin, Evans, J. Chem. Phys. 132, 154102 (2010).

Analyze influence of “anomalous transport” in narrow pores on reactivity (yield).
Specifically, we analyze the difficulty for reactants & products to pass each other.




PROPOSED LANGEVIN

ANALYSIS OF “RESTRICTED PASSING” |
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DETERMINE HOW THE “EXCHANGE” OR “PASSING” PROBABILITY DEPENDS ON:
(I) THE PORE DIAMETER (relative to the size of the reactant & product molecules) el A @1 el ALl
(1) THE SHAPE OF THE MOLECULES (e.g., alignment mediated-passing) The Langevin Equation, World

Scientific, Singapore, (2004).




“RESTRICTED PASSING” of 2 SPHERES in a CYLINDRICAL PORE |

(David Ackerman)  |_angevin dynamics analysis
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Examples of passing/separation

(a) two spheres, P=0.116; (b) sphere and dumbbell, P=0.066.

Langevin trajectories for separating and passing events in a cylindrical
pore with g/r=1, small (large) circles indicate initial (final) configurations.

timestep = 0.0001




Fokker-Planck equation analysis (high dim. diffusion eqn.)

Pore diameter
O N.%l 2Rp = 4rt+g
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Fokker-Planck equation for overdamped LE

d/dt P(x,t)= d/dx D d/dx P(x, t)
=D (dz/dyl2 P, v, 8z tyt ddy,2 P(y,, y,, 8 z, t)t 2 d%/dAZ2 Py, v, 62, t))

circle radius r

, where P(x,t): probability density at (x , t), x=(y;, Y,, 0z), D=I/2.



Examples of passing/separation

£%%(dz) = ”dg.ldﬂz £%(q;,9,,62).
BC: P(6z= -2r or 4r)=0

-2r 2r 4r -2r

P(L)=flux of steady-state @dz= -2r
P(R)=flux of steady-state @oz= 4r
passing rate : P(L)/ [P(L)+ P(R)] .

f(dz,t) = lldg,dg, f(q,,9,,07; ©).
IC: P(6z=2r,0)=0(5z-2r);
BC: P(6z= -2r or 4r,t)=0.

2r 4r -2r 2r 4r

P,y ()= dt flux@bdz= -2
Pp(R)=[ dt flux@dz= 4r
passing rate : Ptrap(L)/ [Ptrap(L)+ Ptrap(R)]

TIME-DEPENDENT FPE:

0/t £(q,9,,07; t) = Lpg 1(q;,9,,07; 1)
with self-adjoint L = VD V.

STEADY-STATE FPE:
0 = Lgpg £%%(q;,9,, 82) + V! (82 — 2r).

PASSING PROB.~ (g/r)!4 o



Equivalent time-independent diffusion equation problem
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Effective 2D FEM approximation

Q.4(82) =] ... [ dq, ... dg, (q,, ... ,q,,02).

g/lr=1/8

glr=1/32

fss=0 at the ends is dark blue, and the maximum fss is dark maroon.



Langevin and Fokker-Planck results

(a) circle-circle in 2D: Langevin (LE) results; time-dependent Fokker-Planck equation (tFPE); 3D
FEM; effective 2D FEM

(b) spheres in 3D: LE; tFPE; effective 2D FEM

Inset: two spheres (SS) versus sphere+dumbbell (SD); LE and 2D FEM

Wang, Ackerman, Slowing, Evans, Phys. Rev. Lett. 113, 038301 (2014)



Summary

C+C C+D C+E S+S S+D S+E
O1sT 2 2 3 25 2.5 4.5
O g 14 14 - 1.7 1.7 -

C: circle; S: sphere; D: dumbbell; E: ellipsoid

*molecular passing processes in narrow pores is not described by a
simple TST, but rather depends on more global features of the confined
geometry during the passing process.

*we have provided a general picture for the behavior of molecular passing
processes by Langevin dynamics and Fokker-Planck equation.
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