A New Poisson-Boltzmann Equation for
 two types of ion species with different size

Chiun-Chang Lee

chlee@mail.nhcue.edu.tw / Applied Mathematics, NHCUE
This is a joint work with Professors T.C. Lin \& Chun Liu

Workshop on Analysis and Its Applications
in Biology and Physiology
Center for Advanced Study in Theoretical Sciences (CASTS)
Dec. 26-31. 2014

Outline

θ
Review on Modified Poisson-Boltzmann (MPB) equations with steric effects

PB_ns equations: a new Poisson-Boltzmann equation with steric effects

Limiting behavior of 1-D solutions of the PB_ns equation
θ Asymptotic analysis and comparison with MPB equations

Review on Modified Poisson-Boltzmann (MPB) equations with steric effects

MPB equation

Two counterions with the same size a (cf. [1])

$$
\epsilon^{2} w^{\prime \prime}=\frac{c_{b}\left(e^{q_{1} w}-e^{-q_{2} w}\right)}{(1-\nu)+\frac{\nu}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}
$$

$\omega=\frac{e_{0} \phi}{k_{B} T} ; \phi$: electrostatic potential
e_{0} : elementary charge
c_{b} : bulk concentration
$-q_{1}$: the valence of the negative ion
$k_{B} T$: thermal energy
ϵ^{2} : dielectric constant
$+q_{2}$: the valence of the positive ion
$v \sim\left(q_{1}+q_{2}\right) c_{b} a^{3} \ll 1$
[1] Borukhov, Andelman and Orland (1997) Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation, PRL

MPB equation

Two counterions with the same size a (cf. [1])
$\epsilon^{2} u$ Poisson's equation: $\epsilon^{2} \omega^{\prime \prime}=q_{1} n-q_{2} p$
Boltzmann distri.: $q_{1} n=\theta e^{q_{1} w}, q_{2} p=\theta e^{-q_{2} w}$

MPB equation

Two counterions with the same size a (cf. [1])

$$
\epsilon^{2} w^{\prime \prime}=\frac{c_{b}\left(e^{q_{1} w}-e^{-q_{2} w}\right)}{(1-\nu)+\frac{\nu}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}
$$

equation

Standard Poisson-Boltzmann

$$
\epsilon^{2} w^{\prime \prime}=\theta\left(e^{q_{1} w}-e^{-q_{2} w}\right)
$$

$$
\theta=\theta(w)=\frac{1}{(1-v)+\frac{v}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}
$$

MPB equation

Two counterions with the same size a (cf. [1])

$$
\epsilon^{2} w^{\prime \prime}=\frac{c_{b}\left(e^{q_{1} w}-e^{-q_{2} w}\right)}{(1-\nu)+\frac{\nu}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}
$$

Free Energy $F=U-T S$

$$
U=\int\left(-\frac{\epsilon^{2}}{2}\left|w^{\prime}\right|^{2}+\left(q_{1} e_{0} c^{-}-q_{2} e_{0} c^{+}\right) w\right) d x
$$

$$
-T S=\frac{k_{B} T}{a^{3}} \int c^{+} a^{3} \log \left(c^{+} a^{3}\right)+c^{-} a^{3} \log \left(c^{-} a^{3}\right)+\left(1-c^{+} a^{3}-c^{-} a^{3}\right) \log \left(1-c^{+} a^{3}-c^{-} a^{3}\right) d x
$$

$\frac{\delta F}{\delta w}=0 \Rightarrow-\epsilon^{2} w^{\prime \prime}=-q_{1} e_{0} c^{-}+q_{2} e_{0} c^{+}:$Poisson's Equation $\frac{\delta F}{\delta c^{ \pm}}=\mu^{ \pm}$(chemical potential): Modified Boltzmann distribution

MPB equation

Modified Boltzmann distribution (continued)

$$
c^{-}=\frac{e_{0} c_{b} e^{\frac{q_{1} e_{0}}{k_{B} T} w}}{(1-v)+\frac{v\left(q_{2} e^{\frac{q_{1} e_{0}}{k_{B} T} w}+q_{1} z e^{-\frac{q_{2} e_{0}}{k_{B} T} w}\right)}{q_{1}+q_{2}}},
$$

If the size of two ions are not the same, then c^{+}and c^{-}satisfy a coupled system of nonlinear algebraic equations

$$
\frac{\delta F}{\delta c^{+}}=\mu^{+}, \frac{\delta F}{\delta c^{-}}=\mu^{-},
$$

which cannot be solved explicitly. [2]
[2] Li, Liu, Xu, Zhou (2013) Generalized Boltzmann Distributions, Counterion Stratification, and
Modified Debye Length Nonlinearity

A New Poisson-Boltzmann equations with steric effects

The PB_ns Equation

[3] Y. Hyon, B. Eisenberg and C. Liu (2010-2012 JCP, CMS, DCDS-A)
[4] T.C. Lin and B. Eisenberg (2014 CMS)

COMMUN. MATH. SCI,
(c) 2014 International Press

Vol. 12, No. 1, pp. 149-173

A NEW APPROACH TO THE LENNARD-JONES POTENTIAL AND A NEW MODEL: PNP-STERIC EQUATIONS*

TAI-CHIA LIN ${ }^{\dagger}$ AND BOB EISENBERG ${ }^{\ddagger}$

Abstract

A class of approximate Lennard-Jones (LJ) potentials with a small parameter is found whose Fourier transforms have a simple asymptotic behavior as the parameter goes to zero. When the LJ potential is replaced by the approximate LJ potential, the total energy functional becomes simple and exactly the same as replacing the LJ potential by a delta function. Such a simple energy functional can be used to derive the Poisson-Nernst-Planck equations with steric effects (PNP-steric equations), a new mathematical model for the LJ interaction in ionic solutions. Using formal asymptotic analysis, stability and instability conditions for the 1D PNP-steric equations with the Dirichlet boundary conditions for one anionic and cationic species are expressed by the valences, diffusion constants, ionic radii, and coupling constants. This is the first step to study the dynamics of solutions of the PNP-steric equations.

The PB_ns Equation

- Repulsive free energy for electrolyte solutions

$$
\begin{aligned}
& E_{\sigma}\left[c_{1}, \ldots, c_{N}, \phi\right]=E_{P B}\left[c_{1}, \ldots, c_{N}, \phi\right]+\frac{1}{2} \int \sum_{i, j} g_{i j} c_{i} c_{j} d x \\
& g_{i j} \sim\left(a_{i}+a_{j}\right)^{3}
\end{aligned}
$$

- $E_{P B}\left[c_{1}, \ldots, c_{N}, \phi\right]=\int\left(k_{B} T \sum_{i} c_{i} \log c_{i}+\frac{1}{2} \sum_{i} z_{i} e_{0} c_{i} \phi\right) d x$
a_{i} : radius of ith ion species
$\varepsilon_{i, j}$'s are positive energy constants due to ion-ion interaction

The PB_ns Equation

- The variation of E_{σ} gives our PB_ns equatoin

$$
\begin{gathered}
k_{B} T \log c_{i}+z_{i} e_{0} \phi+\sum_{j} g_{i j} c_{j}=\mu_{i} \\
-\nabla \cdot\left(\epsilon^{2} \nabla \phi\right)=\sum_{j} z_{j} e_{0} c_{j}
\end{gathered}
$$

The PB_ns Equation

- The variation of E_{σ} gives our PB_ns equatoin

$$
\begin{gathered}
k_{B} T \log c_{i}+z_{i} e_{0} \phi+\sum_{j} g_{i j} c_{j}=\mu_{i} \\
-\nabla \cdot\left(\epsilon^{2} \nabla \phi\right)=\sum_{j} z_{j} e_{0} c_{j}
\end{gathered}
$$

Main study: Focus on the model with one cation and one anion species (e.g. NaCl or CaCl_{2})
(i) Consider the case of $g_{11}=g_{22}=g_{12}>0$ and compare the PB_ns equation with the MPB equation as $\epsilon \downarrow 0$.
(ii) Analyze the uniqueness result for the two component of algebraic equations.

The PB_ns Equation

- Simple case: NaCl Solution with $g_{11}=g_{22}=g_{12}$

$$
\begin{gathered}
k_{B} T \log c_{1}-e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0 \\
k_{B} T \log c_{2}+e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0 \\
\nabla \cdot\left(\epsilon^{2} \nabla \phi\right)=e_{0} c_{1}-e_{0} c_{2}
\end{gathered}
$$

The PB_ns Equation

- Simple case: NaCl Solution with $\boldsymbol{g}_{11}=g_{22}=g_{12}$

$$
\begin{gathered}
k_{B} T \log c_{1}-e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0 \\
k_{B} T \log c_{2}+e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0 \\
\nabla \cdot\left(\epsilon^{2} \nabla \phi\right)=e_{0} c_{1}-e_{0} c_{2}
\end{gathered}
$$

- $c_{1}=\theta e^{\frac{e_{0} \phi}{k_{B} T}}, c_{2}=\theta e^{-\frac{e_{0} \phi}{k_{B} T}}$

Standard Poisson-Boltzmann
equation

$$
\left\{\begin{array}{l}
\nabla \cdot\left(\epsilon^{2} \nabla \phi\right)=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right)
\end{array}\right.
$$

The PB_ns Equation

Boundary condition

- The capacitance effect of the electric double layer gives

The PB_ns Equation

Existence and Uniqueness

Recall

$k_{B} T \log c_{1}-e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0$
$k_{B} T \log c_{2}+e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0$

The PB_ns Equation

Existence and Uniqueness

$$
\left\{\begin{array}{c}
\epsilon^{2} \phi^{\prime \prime}=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \tag{1.2}
\end{array} \text { in } \Omega\right.
$$

- $\frac{d c_{1}}{d \phi}>0>\frac{d c_{2}}{d \phi}$
- $\frac{d^{2} c_{1}}{d \phi^{2}}>0>\frac{d^{2} c_{2}}{d \phi^{2}}$ as $\phi \in\left(-\infty, \phi^{*}\right) ; \quad \frac{d^{2} c_{1}}{d \phi^{2}}<0<\frac{d^{2} c_{2}}{d \phi^{2}}$ as $\phi \in\left(\phi^{*}, \infty\right)$

$$
\begin{aligned}
& k_{B} T \log c_{1}-e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0 \\
& k_{B} T \log c_{2}+e_{0} \phi+g_{12}\left(c_{1}+c_{2}\right)=0
\end{aligned}
$$

The PB_ns Equation

Existence and Uniqueness

$$
\left\{\begin{array}{c}
\epsilon^{2} \phi^{\prime \prime}=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \tag{1.2}
\end{array} \text { in } \Omega\right.
$$

- Energy functional $\mathrm{E}[\phi]=\int_{\Omega} \frac{\epsilon^{2}}{2}|\nabla \phi|^{2}+\underbrace{\mathrm{G}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right)}_{\text {strictly convex }} d x+\int_{\partial \Omega} \frac{\epsilon^{2}}{2 \eta}\left(\phi-\varphi_{\mathrm{bd}}\right)^{2} d S$

The PB_ns Equation

Existence and Uniqueness

$$
\left\{\begin{array}{c}
\epsilon^{2} \phi^{\prime \prime}=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \tag{1.2}
\end{array} \text { in } \Omega\right.
$$

- Energy functional $\mathrm{E}[\phi]=\int_{\Omega} \frac{\epsilon^{2}}{2}|\nabla \phi|^{2}+\underbrace{\mathrm{G}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right)}_{\text {strictly convex }} d x+\int_{\partial \Omega} \frac{\epsilon^{2}}{2 \eta}\left(\phi-\varphi_{\mathrm{bd}}\right)^{2} d S$

Theorem 1

Assume that Ω is a bounded domain with $\partial \Omega \in C^{2}$. Let $\in>0$ and $\eta \geq 0$. Then the equation (1.1) with the boundary condition (1.2) has a unique solution

$$
\phi \in C^{2}(\bar{\Omega}) \cap C^{\infty}(\Omega)
$$

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

Theorem 2

(i) There exist C and M independent of ϵ such that

$$
\left|\phi^{\prime}(x)\right| \leq \frac{C}{\epsilon}\left(e^{-\frac{M(1+x)}{\epsilon}}+e^{-\frac{M(1-x)}{\epsilon}}\right) \text { for } x \in[-1,1] .
$$

(ii) $(\phi(x), \theta(x)) \rightarrow\left(\phi^{*}, \theta^{*}\right)$ in $(-1,1)$ as $\in \downarrow 0$, where

$$
\phi^{*}=0, \frac{\log \theta^{*}}{\theta^{*}}=-\frac{2 g_{12}}{k_{B} T} .
$$

(iii) $\epsilon \phi^{\prime}(\pm 1) \rightarrow \phi_{ \pm}$as $\epsilon \downarrow 0$, where $\phi_{ \pm}$is determined by

$$
\begin{aligned}
& \sqrt{\frac{g_{12}}{\gamma^{2}}\left(\varphi_{\mathrm{bd}}(\pm 1)-\phi_{ \pm}\right)^{2}+\left(1+\frac{2 g_{12}}{k_{B} T} \theta^{*}\right)^{2}}- \\
& \left(e^{\phi_{ \pm}}+e^{-\phi_{ \pm}}\right) \times e^{\sqrt{\frac{g_{12}\left(\varphi_{\mathrm{bd}}(\pm 1)-\phi_{ \pm}\right)^{2}+\left(1+\frac{2 g_{12}}{k_{B} T^{*}}\right)^{2}}{2}}}=1 .
\end{aligned}
$$

Here we assume $\frac{e_{0}}{k_{B} T}=1$ and $\frac{\eta}{\epsilon} \rightarrow \gamma$ as $\epsilon \downarrow 0$.

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

$$
\begin{gathered}
\left\{\begin{array}{c}
\epsilon^{2} \phi^{\prime \prime}=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right)
\end{array} \text { in }(-1,1)\right. \\
\phi(\pm 1) \pm \eta \phi^{\prime}(\pm 1)=\varphi_{\mathrm{bd}}(\pm 1) \\
\log \theta=\log \frac{\theta}{\theta^{*}}+\log \theta^{*} \sim \frac{\theta}{\theta^{*}}-1+\log \theta^{*} \\
\square \theta \sim \frac{\theta^{*}}{\left(1-\mu^{*}\right)+\mu^{*} \cosh \frac{e_{0} \phi}{k_{B} T}} \\
0<\mu^{*}=\frac{\frac{2 g_{12}}{k_{B} T} \theta^{*}}{1+\frac{2 g_{12}}{k_{B} T} \theta^{*}}<1 \text { is related to the total bulk volume fraction of ions }
\end{gathered}
$$

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

$$
\begin{aligned}
\epsilon^{2} \phi^{\prime \prime} & =e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
& =\frac{2 e_{0} \theta^{*} \sinh \frac{e_{0} \phi}{k_{B} T}}{\left(1-\mu^{*}\right)+\mu^{*} \cosh \frac{e_{0} \phi}{k_{B} T}}+o(\phi)
\end{aligned}
$$

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

$$
\begin{aligned}
\epsilon^{2} \phi^{\prime \prime} & =e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
& =\frac{2 e_{0} \theta^{*} \sinh \frac{e_{0} \phi}{k_{B} T}}{\left(1-\mu^{*}\right)+\mu^{*} \cosh \frac{e_{0} \phi}{k_{B} T}}+o(\phi)
\end{aligned}
$$

Same with Andelman's MPB equation
MPB Equation with $q_{1}=q_{2}=1$

$$
\epsilon^{2} w^{\prime \prime}=\frac{c_{b}\left(e^{q_{1} w}-e^{-q_{2} w}\right)}{(1-\nu)+\frac{\nu}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}
$$

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

$$
\left\{\begin{array}{l}
\epsilon^{2} \phi^{\prime \prime}=e_{0} \theta\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right) \\
\frac{\log \theta}{\theta}=-\frac{g_{12}}{k_{B} T}\left(e^{\frac{e_{0} \phi}{k_{B} T}}+e^{-\frac{e_{0} \phi}{k_{B} T}}\right)
\end{array} \text { in }(-1,1)\right.
$$

is equivalent to the equation

$$
\epsilon^{2} \phi^{\prime \prime}=e_{0} e^{1-\frac{e_{0}}{k_{B} T} \sqrt{g_{12}\left(\epsilon^{2} \phi^{\prime 2}-2 C_{\epsilon}\right.}}\left(e^{\frac{e_{0} \phi}{k_{B} T}}-e^{-\frac{e_{0} \phi}{k_{B} T}}\right),
$$

Conclusion: When $g_{11}=g_{22}=g_{12}$, the PB_ns equation and the MPB equation have same asymptotic behavior at interior points, however, have different asymptotic behavior at boundary points.

The PB_ns Equation

Limiting behavior ($\epsilon \downarrow 0$): 1-dimensional case

PB_ns equation

$$
\begin{aligned}
\epsilon^{2} \phi^{\prime \prime}(x)= & q_{1} c_{1}(\phi(x))-q_{2} c_{2}(\phi(x)) \text { for } x \in(-1,1), \\
& \log c_{1}=q_{1} \phi-\left(g_{11} c_{1}+g_{12} c_{2}\right), \\
& \log c_{2}=-q_{2} \phi-\left(g_{12} c_{1}+g_{22} c_{2}\right) . \\
& \phi(\pm 1) \pm \eta \phi^{\prime}(\pm 1)=\varphi_{\mathrm{bd}}(\pm 1)
\end{aligned}
$$

MPB equation

$\epsilon^{2} w^{\prime \prime}=\frac{c_{b}\left(e^{q_{1} w}-e^{-q_{2} w}\right)}{(1-\nu)+\frac{\nu}{q_{1}+q_{2}}\left(q_{2} e^{q_{1} w}+q_{1} e^{-q_{2} w}\right)}$
$w(\pm 1) \pm \eta w^{\prime}(\pm 1)=\varphi_{\mathrm{bd}}(\pm 1)-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}$

Theorem 3

Assume that q_{1} and q_{2} are positive constants and $g_{11}=g_{22}=g_{12}$. For $\epsilon>0$ and $\eta \geq 0$, let ϕ be the unique classical solution of the PB_ns equation (1.1) with the boundary condition (1.5), and let w be the unique classical solution of the MPB equation (1.9) with the boundary condition (1.14). Then for any compact subset K of the interval $(-1,1)$, both w and $\phi-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}$ uniformly converge to zero in K as ϵ goes to zero.Moreover, we have

The Main Results (continued)

(i) If $\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}<\min \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}$, then both ϕ and w are convex on $(-1,1)$, and

$$
\begin{equation*}
0 \leq \phi(x)-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}} \leq w(x) \leq M^{*}, \quad \text { for } \quad x \in[-1,1] \tag{1.27}
\end{equation*}
$$

where $M^{*}=\max \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}$.
(i) The case of $\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}<\min \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}$.

The Main Results (continued)

(ii) If $\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}>\max \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}$, then both ϕ and w are concave on $(-1,1)$, and

$$
\begin{equation*}
m^{*} \leq w(x) \leq \phi(x)-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}} \leq 0, \quad \text { for } \quad x \in[-1,1] \tag{1.28}
\end{equation*}
$$

where $m^{*}=\min \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}$.
(ii) The case of $\max \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}<\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}$.

The Main Results (continued)

(iii) If $\phi_{\mathrm{bd}}(-1)<\phi_{\mathrm{bd}}(1)$ and $\phi_{\mathrm{bd}}(-1) \leq \frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}} \leq \phi_{\mathrm{bd}}(1)$, then both ϕ and w are monotonically increasing on $(-1,1)$, and there exists $x_{0, \epsilon} \in(-1,1)$ such that

$$
\begin{align*}
& m^{*} \leq w(x) \leq \phi(x)-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}}, \quad \text { for } \quad x \in\left[-1, x_{0, \epsilon}\right) \tag{1.29}\\
& \phi(x)-\frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}} \leq w(x) \leq M^{*}, \quad \text { for } \quad x \in\left(x_{0, \epsilon}, 1\right] \tag{1.30}
\end{align*}
$$

(iii) The case of $\min \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\} \leq \frac{1}{q_{1}+q_{2}} \log \frac{q_{2}}{q_{1}} \leq \max \left\{\phi_{\mathrm{bd}}(1), \phi_{\mathrm{bd}}(-1)\right\}$.

Thank you for your attention

