Mathematical Models for protein polymerization and applications to amyloid diseases

Marie Doumic

Taipei, May 27th, 2014

Protein polymerization

Common point between:

- Alzheimer's (illustrated)
- Prion (mad cow)
- Huntington's
- and some others (Parkinson's, etc)?

Neurodegenerative diseases characterized by abnormal accumulation of protein aggregates called AMYLOIDS

Prions: PRoteinaceous Infectious ONIy particle Healthy state: monomeric protein (PrP Prion, Aβ Alzheimer's,

PolyQ Huntington's)

Disease state: polymers. PRION: PRoteinasceous Infectious Only *Prion*: infectious agents composed of proteins in a misfolded form.

¹Source:" Mad Cow Mysteries", a public lecture series given by Jay Ingram.

Protein polymerization: main questions

- Understand what are the key polymerization mechanisms
- Identify transient species
- What are the "most infectious" sizes of polymers?
- How to select and calibrate the models?

Main difficulty: extremely rare and partial size distributions

Models Derivation

discrete (ODE) models

Models Derivation

5

- discrete (ODE) models
- continuous (PDE) models

Models Derivation

。 もして、「「」、「」、「」、「」、(」、

- discrete (ODE) models
- continuous (PDE) models
- ... and later on: stochastic models

Models for protein polymerization

Deterministic framework: the law of mass action (Guldberg & Waage, 1867)

$$A+B \stackrel{k^+}{\underset{k^-}{\cong}} A'+B'$$

is translated by

$$\frac{d[A]}{dt} = -k^+[A][B] + k^-[A'][B'],$$

• ロマ・山下・山川・山下・山口・山

and similarly for the concentrations [B], [A'] and [B']. Large amount of reactants

Models for protein polymerization Reactions

- V^* monomers' concentration, n_i *i*-polymer's concentration.
 - monomer-conformer exchange $V^* \stackrel{k_l^+}{\underset{k_l^-}{\rightleftharpoons}} V$

• (de)polymerization by monomer addition $n_i + V \rightleftharpoons_{g_{i+1}}^{g_i} n_{i+1}$

7 うつの ボースボッスボッスピッスロッ

► fragmentation-coalescence: $n_i + n_j \underset{B_{i+j}k_{i+j,i}}{\overset{k_{i,j}^{col}}{\rightleftharpoons}} n_{i+j}$

etc.

Models for protein polymerization

ODE system for the "Prion" Model (Masel et al., Biophys. Chem., 1999)

Considered reactions: polymerization and fragmentation

$$\frac{dn_i}{dt} = -V(t)(g_in_i - g_{i-1}n_{i-1}) - B_in_i + 2\sum_{j=i+1}^{\infty} B_jk_{i,j}n_j, \qquad i \ge i_0,$$

$$\frac{dV}{dt} = \lambda - \gamma V - V \sum_{i=i_0}^{\infty} g_i n_i + 2 \sum_{j \ge i_0} \sum_{i < i_0} i k_{i,j} B_j n_j$$

Mass balance:

$$\frac{d}{dt}\left(V(t)+\sum_{i=i_0}^{\infty}in_i(t)\right)=\lambda-\gamma V.$$

• うクク ヨー 〈国 〉 〈国 〉 〈国 〉 〈日 〉

Amyloid diseases: average size $i_M \gg 1$

Protein polymerization: from ODE to PDE

Defining

$$\varepsilon = \frac{1}{i_M}, \qquad x_i = i\varepsilon$$

with i_M the average polymer size:

$$i_M = \frac{\sum_{i \ge i_0} i n_i}{\sum n_i}$$

we may define, after definition of dimensionless quantities

$$n^{\varepsilon}(t,x) = \sum n_i \mathbb{1}_{[x_i,x_{i+1}]}$$

and get a PDE to replace the infinite ODE system. Limit of such a derivation: the average size changes with time. Protein polymerization: from ODE to PDE

Coagulation & fragmentation:

- P. Laurençot & S. Mischler, Proc. Roy. Soc. Edinburgh, 2002
- polymerization & depolymerization in a closed system: From Bekker-Döring to Lifshitz-Slyozov: J.F. Collet, T. Goudon, F. Poupaud, A. Vasseur, SIAM App. Math, 2002 2nd order approx: modified Lifshitz-Slyozov: Collet and Hariz, 2002.
- ▶ "Prion Model": MD, T. Goudon, T. Lepoutre, CMS 2009
- General Model with nucleation: S. Prigent et al, Plos One 2012.

Protein polymerization: from ODE to PDE Formal derivation of a general model

Model proposed in (S. Prigent et al., Plos One, 2012):

$$\begin{aligned} \frac{dV^*}{dt} &= -k_I^+ V^* + k_I^- V, \\ \frac{dV}{dt} &= k_I^+ V^* - k_I^- V - \frac{i_0 k_{on}^N V^{i_0+1} g(x_0)}{k_{off}^N + g(x_0) V} - V \int_{x_0}^\infty g \ ndx + \int_{x_0}^\infty g^- \ ndx, \\ \frac{\partial n}{\partial t} &= -V \frac{\partial}{\partial x} (gn) + \frac{\partial}{\partial x} (g^- n) + 2 \int_x^\infty B(y) k(x, y) \ n(t, y) dy - Bn \\ &+ \frac{1}{2} \int_{x_0}^x k_{col}(y, x - y) n(t, y) n(t, x - y) dy - \int_{x_0}^\infty k_{col}(x, y) n(t, x) \ n(t, y) dy, \end{aligned}$$

11 うりつ ほ イビッ イビッ トロッ

 $g(x_0)n(t,x_0) = g(x_0)\frac{k_{on}^N V^{i_0}}{k_{off}^N + g(x_0)V}.$

Towards models calibration: what can we measure?

Protein polymerization: measurements 1. ThT "Thioflavine T"

Measures the total polymerised mass

$$\sum_{i\geq i_0}in_i,\qquad \int xn(t,x)dx$$

In vitro polymerization of $\beta 2m$. From Xue, Radford et al., PNAS, 2008

13

3

< □ > < □ > < □ > < □ > < □ > < □ >

Protein polymerization: measurements2. SLS, "Static Light Scattering"

Measures the second momentum

$$\sum_{i\geq i_0}i^2n_i,\qquad \int x^2n(t,x)dx$$

Depolymerization experiment (PrP)

Protein polymerization: measurements 3/ Size distributions

Difficult to obtain: image analysis + size threshold (measures only for more than 120 mers) + experimental device

Towards models calibration: build efficient numerical schemes

Numerical Schemes

Very large computation domain (range 10⁶) Efficiency of the PDE for intensive numerical simulations

BUT

- No quantitative convergence rate for the (weak *) limit
- Specific treatment for the boundary condition / small sizes

Numerical Schemes

(H.T. Banks, MD, C. Kruse, submitted)

- ODE solved for $i \leq N_0 = O(\frac{1}{\varepsilon})$
- PDE is approximated e.g. by finite volume methods (upwind, Lax-Wendroff, flux limiter)

- 日本 - 4 日本 - 4 日本 - 日本

Numerical Schemes

(H.T. Banks, MD, C. Kruse, submitted)

- Adaptive mesh, refined towards smaller polymer sizes
- We keep the ratio between the step size and the corresponding mesh element constant, i.e.

$$rac{\Delta x_i}{x_i} = q = O(arepsilon) \quad \Rightarrow \quad x_i = rac{1}{1-q} x_{i-1}$$

- This mesh is quasi-linear in the sense of $\frac{\Delta x_{i-1}}{\Delta x_i} = 1 + O(q)$
- The Upwind and Lax-Wendroff schemes are then consistent on the progressive mesh
- Any accurate scheme for the PDE may be used (see e.g. T. Goudon, F. Lagoutière, L.M. Tine, 2013)

Models Calibration

Studies on PolyQ (Huntington's)

Models Calibration

- Studies on PolyQ (Huntington's)
- State Estimation on a toy model

PolyQ: a domain in the protein HTT responsible for Huntington's Experiments done by H. Razaei and S. Prigent, INRA, (Virologie et Immunologie Moleculaires)

21

白 医 不得 医 不良 医 不良 医二氏

- Understand the key polymerization mechanisms
- How to select and calibrate the model?

First study (S. Prigent, A. Ballesta, MD et al., PLoS One, 2012)

Not an infectious disease: no coagulation, no fragmentation

$$\begin{split} \frac{dV^*}{dt} &= -k_I^+ V^* + k_I^- V, \\ \frac{dV}{dt} &= k_I^+ V^* - k_I^- V - \frac{i_0 k_{on}^N V^{i_0+1} g(x_0)}{k_{off}^N + g(x_0) V} - V \int_{x_0}^\infty g \ ndx + \int_{x_0}^\infty g^- ndx, \\ \frac{\partial n}{\partial t} &= -V \frac{\partial}{\partial x} (gn) + \frac{\partial}{\partial x} (g^- n) \\ g(x_0) n(t, x_0) &= g(x_0) \frac{k_{on}^N V^{i_0}}{k_{off}^N + g(x_0) V}. \end{split}$$

An important question: what is the size of the nucleus i_0 ?

First study (S. Prigent, A. Ballesta et al., PLoS One, 2012)

First study(S. Prigent, A. Ballesta et al., PLoS One, 2012)

Systematic Parameters estimation study (H.T. Banks, MD, C. Kruse)

Ordinary Least Squares or Weighted Least Squares? Residual plots

$$r_i = rac{data_i - M(t_i, \hat{ heta})}{M(t_i, \hat{ heta})^\gamma}, \hspace{1em} \gamma \in [0, 1]$$

Residual Plots - Weighted Least Squares with Varying γ

Inverse problem for datapoints ≥ 0.12 and $i_0 = 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

26

Standard Errors for Parameters Using WLS

Estimated parameters $\hat{\theta} = (k_l^+, ..., i_{max})$ (vector length $\kappa_{\theta} = 9$) Use of the covariance matrix defined by

$$SE_k = \sqrt{\hat{\sigma}^2(F)^{-1}},$$

for F defined from sensitivity analysis and σ^2 approximation of the variance.

For finite standard error using asymptotic theory, the 9 × 9 matrix $F = \chi^T(\hat{\theta})W(\hat{\theta})\chi(\hat{\theta})$ must be invertible. Here: good fit of the curve and good residuals.

BUT: near linear dependence between certain rows of F, hence a huge condition number (10^{24}).

CONCLUSION: non uniqueness of the parameteters At least for 1 curve at a time...

Sensitivity Analysis

Sensitivity matrices

$$\chi = \frac{\partial M}{\partial \theta}$$

(a) Sensitivity w.r.t. k_l^- (b) Sensitivity w.r.t. k_l^+

Sensitivity Analysis (2/2)

Figure : (a) Sensitivity w.r.t. k_{on}^N ; (b) Sensitivity w.r.t. k_{off}^N

The sensitivities for the remaining parameters are in an order of magnitude of less than 10^{-6} .

State estimation: depolymerization case (in progress with A. Armiento (PhD student) and P. Moireau)

Real Experience : Light intensity in SLS test

²Source: H. Rezaei's team, Lab. of Inra (Jouy-en-Josas, France) (2) (2) (2) (3)

Constant depolymerisation rate $k_{dep} \equiv b$

$$(LSs) \begin{cases} \frac{\partial}{\partial t}c(x,t) - \frac{\partial}{\partial x}bc(x,t) = 0, \quad (t,x) \in [0,T] \times [0,L], \\ c(x,0) = c^{in}, \end{cases}$$

Analytic solution: $c(x,t)=c^{in}(x+bt)$. Observation = $\mu_{\mathbf{n}}$

$$\mu_n[c^{in}](t) = \int_0^L x^n c(x,t) dx = \int_{bt}^L c^{in}(y)(y-bt)^n dy \quad \text{for } n \in \mathbb{N}$$

Actual Observation = $\mu^{\rm mes}$

$$\mu^{mes} = \mu_n + \chi.$$

State estimation for a depolymerizing system

$$c^{in}(x) = \frac{1}{n!(-b)^{n+1}} \frac{d^{n+1}}{dt^{n+1}} \mu_n(\frac{x}{b}),$$

$$\mu^{mes}$$
 s.t. $\|\mu^{mes} - \mu_n\|_{\mathcal{H}^{-\frac{1}{2}}([0,T])} \leq \varepsilon.$
State estimation for a depolymerizing system

$$c^{in}(x) = \frac{1}{n!(-b)^{n+1}} \frac{d^{n+1}}{dt^{n+1}} \mu_n(\frac{x}{b}),$$

$$\mu^{mes}$$
 s.t. $\|\mu^{mes} - \mu_n\|_{\mathcal{H}^{-\frac{1}{2}}([0,T])} \leq \varepsilon.$

Regularization by filtering:

$$c_{\varepsilon}^{in} = \frac{1}{n!(-b)^{n+1}} \frac{d^{n+1}}{dt^{n+1}} \mu_n^{\varepsilon}(\frac{x}{b}).$$

State estimation for a depolymerizing system

$$c^{in}(x) = rac{1}{n!(-b)^{n+1}} rac{d^{n+1}}{dt^{n+1}} \mu_n(rac{x}{b}),$$

$$\mu^{mes}$$
 s.t. $\|\mu^{mes} - \mu_n\|_{\mathcal{H}^{-\frac{1}{2}}([0,T])} \leq \varepsilon.$

Regularization by filtering:

$$c_{\varepsilon}^{in} = \frac{1}{n!(-b)^{n+1}} \frac{d^{n+1}}{dt^{n+1}} \mu_{n}^{\varepsilon} (\frac{x}{b}).$$

$$c_{\varepsilon,\alpha}^{in} = \rho_{\alpha} * c_{\varepsilon}^{in} = \rho_{\alpha}^{(n+1)} * \left(\frac{1}{n!(-b)^{n+1}} \mu_{n}^{\varepsilon} (\frac{x}{b})\right).$$
Where $\rho_{\alpha} = \frac{1}{\alpha} \rho(\frac{x}{\alpha}), \ \rho \in \mathcal{C}_{0}^{\infty}(\mathbb{R}_{+}) \text{ s.t. } \mu_{0}[\rho] = 1, \ \mu_{1 \leq k \leq m}[\rho] = 0.$

Proposition (Approximation Accuracy)

Given all the elements defined as before, we have

$$\|c_{\varepsilon,\alpha}^{in}-c^{in}\|_{\mathbb{L}^p}\leq C\left(\frac{\varepsilon}{\alpha^{n+0.5+1}}+\alpha^{m+1}\right)=F_{\varepsilon}(\alpha),$$

Furthermore, the optimal choice for the regularization parameter α is

$$\alpha_{opt} = \varepsilon^{\frac{1}{n+m+2+s}},\tag{1}$$

and, consequently, we have the following estimation

$$err_{opt} = \|c_{\varepsilon,\alpha_{opt}}^{in} - c^{in}\|_{\mathbb{L}^p} = O\left(\varepsilon^{\frac{m+1}{n+m+2+0.5}}\right).$$
(2)

Moments For a Gaussian Initial Condition

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

35

Simulations

36

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

Modelling variability among curves

Deterministic models: are they relevant? (work in progress with S. Eugene & P. Robert)

In vitro polymerization of $\beta 2m$. From Xue, Radford et al., PNAS, 2008

Deterministic models: are they relevant? (work in progress with S. Eugene & P. Robert)

In vitro polymerization of $\beta 2m$. From Xue, Radford et al., PNAS, 2008 To take into account intrinsic variability:

- stochastic model for nucleation
- Iaw of large number / variation of the lag time ?

ъ

(日)、

Experimental Curves

Figure : $m = 122 \ \mu M$

Stochastic model (with S. Eugène and P. Robert)

- M monomers at t = 0
- large volume N
- M/N = m remains constant (=initial concentration)
- X(t) : number of monomers at time t
- $ilde{X}(t)$: number of polymers at time t

Stochastic model (with S. Eugène and P. Robert)

- M monomers at t = 0
- large volume N
- M/N = m remains constant (=initial concentration)
- X(t) : number of monomers at time t
- $ilde{X}(t)$: number of polymers at time t

$$\begin{cases} x + x & \xrightarrow{\alpha \cdot \left(\frac{X}{N}\right)^2} & 2\tilde{x} \\ x + \tilde{x} & \xrightarrow{\beta \cdot \frac{X}{N} \cdot \frac{\tilde{X}}{N}} & 2\tilde{x} \end{cases}$$

where $\alpha << \beta$. Stochastic equation, sum of Poisson processes:

$$\frac{dX}{dt} = -2\sum_{i=1}^{X(X-1)/2} \mathcal{N}^i_{\alpha/N^2}(dt) - \sum_{i=1}^{X(M-X)} \mathcal{N}^i_{\beta/N^2}(dt)$$

First Order: Law of Large Numbers (with S. Eugène and P. Robert)

Proposition

The process $\overline{X}^{N}(t) = \frac{X(Nt)}{N}$ converges in distribution to $(x(t))_{t\geq 0}$, where $(x(t))_{t\geq 0}$ is the solution of :

$$\begin{cases} \dot{x} = -2\alpha x^2 - \beta x(m-x) \\ x(0) = m \end{cases}$$

Proof : Stochastic calculus methods

41 ヘロ > (同 > (目 > (目 > (目 >) への Second Order: Central Limit Theorem (with S. Eugène and P. Robert)

Proposition The process $\left(\frac{X(Nt)-Nx(t)}{\sqrt{N}}\right)_{t\geq 0}$ converges in distribution to $(U(t))_{t\geq 0}$, where U(t) is solution of the SDE :

$$dU_t = \frac{\beta m \sqrt{\alpha} e^{\beta m t/2}}{\alpha e^{\beta m t} + \beta - \alpha} dW_t + \beta m^2 \left[\frac{\beta - \alpha - \alpha e^{\beta m t}}{\beta - \alpha + \alpha e^{\beta m t}} \right] U_t dt$$

Proof : Stochastic calculus methods

Second Order: Central Limit Theorem (with S. Eugène and P. Robert)

Proposition The process $\left(\frac{X(Nt)-Nx(t)}{\sqrt{N}}\right)_{t\geq 0}$ converges in distribution to $(U(t))_{t\geq 0}$, where U(t) is solution of the SDE :

$$dU_t = \frac{\beta m \sqrt{\alpha} e^{\beta m t/2}}{\alpha e^{\beta m t} + \beta - \alpha} dW_t + \beta m^2 \left[\frac{\beta - \alpha - \alpha e^{\beta m t}}{\beta - \alpha + \alpha e^{\beta m t}} \right] U_t dt$$

Proof : Stochastic calculus methods

Conclusion

$$rac{X(Nt)}{N} \mathop{\sim}\limits_{N
ightarrow \infty} x(t) + rac{1}{\sqrt{N}} U(t)$$

42 イロト (周) (国) (国) (国) (国)

Definition

We define the lag time by the following random variable :

$$T_N^{\delta} = \inf\{t > 0, X(t) \le \delta N\}$$

Definition

We define the lag time by the following random variable :

$$T_N^{\delta} = \inf\{t > 0, X(t) \le \delta N\}$$

Corollary

As N goes to infinity :

$$rac{T_{\delta}^{N}}{N} \underset{N o \infty}{\sim} t_{\delta} + rac{1}{\sqrt{N}} rac{U(t_{\delta})}{-\dot{x}(t_{\delta})}$$
 $t_{\delta} = x^{-1}(\delta).$

where t_{δ} (0)

> 43 ~~ う♪の ほ ・ 4 目 → 4 目 → 4 目 →

$$rac{T_{\delta}^{N}}{N} \mathop{\sim}\limits_{N
ightarrow \infty} t_{\delta} + rac{1}{\sqrt{N}} rac{U(t_{\delta})}{-\dot{ extsf{x}}(t_{\delta})}$$

Proposition

The **random** variable $\frac{U(t_{\delta})}{-\dot{x}(t_{\delta})}$ is almost independent of delta.

$$rac{T_{\delta}^{\mathcal{N}}}{\mathcal{N}} \mathop{\sim}\limits_{\mathcal{N}
ightarrow \infty} t_{\delta} + rac{1}{\sqrt{\mathcal{N}}} rac{U(t_{\delta})}{-\dot{ extsf{x}}(t_{\delta})}$$

Proposition

The **random** variable $\frac{U(t_{\delta})}{-\dot{x}(t_{\delta})}$ is almost independent of delta.

Conclusion

For a given initial concentration of monomers, the polymerisation curves are translations of the mean x(t).

Experimental Curves

Figure : $m = 122 \ \mu M$

Translated Experimental Curves

Figure : $m = 122 \ \mu M$

Estimation of the parameters

$$\begin{cases} x + x & \xrightarrow{\alpha \cdot \left(\frac{X}{N}\right)^2} & 2\tilde{x} \\ x + \tilde{x} & \xrightarrow{\beta \cdot \frac{X}{N} \cdot \frac{\tilde{X}}{N}} & 2\tilde{x} \end{cases}$$

 \rightarrow Only **two** parameters : α and β .

47

** うりの 豆 《豆》《豆》《豆》 (日》

- $\blacktriangleright \ \alpha$ controls the beginning of the reaction
- β controls the take-off

Estimation of $\boldsymbol{\alpha}$

Numerical results

m (µM)	α (10 ⁻⁶ . h^{-1} . μM^{-1})
16.7	$1.91 imes10^{-5}$
30.5	$1.31 imes10^{-7}$
43.7	0.0056
61	0.0279
84.1	0.0014
102.2	0.0151
122	0.0035
142.1	0.0219
243.5	0.3268

 \Rightarrow **Non robust estimation**: due to variance?

Estimation of β

Numerical results

m (μM)	$\beta(10^{-2.}h^{-1}.\mu M^{-1})$
16.7	4.53
30.5	4.54
43.7	2.61
61	2.82
84.1	2.32
102.2	1.78
122	1.59
48.5	2.33
142.1	1.41
243.5	0.77

 \Rightarrow **Robust estimation**: close β for different initial concentrations.

Estimation of the variance

Observe that for
$$\frac{\beta}{\alpha} >> 1$$
:

$$\begin{aligned} \operatorname{Var}\left(\frac{T_{\delta}^{N}}{N}\right) &\approx \frac{1}{Nm^{3}\beta^{2}} \left(\frac{\delta}{1-\delta}\right) \left\{ 2\frac{1-\delta}{\delta} \ln\left(\frac{\beta}{\alpha} \left(\frac{\delta}{1-\delta}\right)\right) + \frac{\beta}{\alpha} \frac{1-\delta}{\delta} \right\} \\ &\approx \frac{1}{N\alpha\beta m^{3}} \quad (\text{independent of } \delta) \\ &\approx \frac{1}{M\alpha\beta m^{2}} \end{aligned}$$

For the data we have:

$$\operatorname{Var}\left(\frac{T_{\delta}^{N}}{N}\right) \approx 10^{-9} hour...$$

50 マロ > < 団 > < 亘 > < 亘 > 三 の への

Modified Stochastic Model

$$\begin{cases} y & \stackrel{k_{l}^{+}}{\rightleftharpoons} & x, \\ k_{l}^{-} & \\ x + x & \stackrel{\tilde{\alpha} \cdot \left(\frac{X}{N}\right)^{2}}{\longrightarrow} & 2\tilde{x} \\ x + \tilde{x} & \stackrel{\tilde{\beta} \cdot \frac{X}{N} \cdot \frac{\tilde{X}}{N}}{\longrightarrow} & 2\tilde{x} \end{cases}$$

If instantaneous equilibrium between x and y : with $r = \frac{k_l^+}{k_l^-} \ll 1$:

$$x(t) \approx ry(t), \quad \forall t$$

and we calculate a new variance for the lag time

$$\operatorname{Var}\left(\frac{T_{\delta}^{N}}{N}\right)\approx\frac{1}{Mr\alpha\beta m^{2}},$$

with the previously estimated $\alpha = \tilde{\alpha}$ and $\beta = \frac{1}{x}\tilde{\beta}$.

Experimental Data and Simulations - $r \approx 10^{-9}$

Figure : $m = 122 \ \mu M$

52

Conclusion

Stochastic model:

- predicts an intrisic variability of any possible intensity with only 3 parameters
- No need of experimental noise
- Robust estimation of β
- Use the variability to calibrate the model!
- Ongoing work : extend stochastic model to include nucleation and fragmentation
- Aggregation models need to adapt to each situation
- Key importance of size distributions
- Inverse problems, state estimation: promising first results, still largely open

in collaboration with

INRA team of biologists in Jouy-en-Josas (VIM/MAP2) H. Rezaei, J. Torrent, D. Martin

INRIA/LJLL MAMBA team

H.W. Haffaf (PhD), C. Kruse (post-doc), S. Prigent (post-doc, former at INRA)

Other INRIA teams

P. Robert (RAP), S. Eugene (PhD, RAP & MAMBA) P. Moireau (M3DISIM), A. Armiento (PhD, M3DISIM & MAMBA)

other collaborators

H.T. Banks (Raleigh, USA), M. Escobedo (BECAM, Spain), W.F. Xue (Canterbury)

References

Doumic, M. and Gabriel, P. (2010) *Eigenelements of a General Aggregation-Fragmentation Model*. Math. Models Methods Appl. Sci. 20(5), 757–783.

- Doumic, M., Goudon, T., Lepoutre, T., *Scaling Limit of a Discrete Prion Dynamics Model*, Comm. Math. Sc., vol.7 Issue 4 (Dec. 2009), pp. 839–865.
- Calvez, V. and Doumic, M. and Gabriel, P. (2010) *Self-similarity in a General Aggregation-Fragmentation Problem ; Application to Fitness Analysis*, J. de Math. Pur. et Appl., 2012.
- Doumic, M., Hoffmann, M., Reynaud-Bouret, P. and Rivoirard, V. (2011) Nonparametric estimation of the division rate of a size-structured population. SIAM J. Numer. Anal., 2012.

Doumic, M., Perthame, B. and Zubelli, J. (2009) *Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics*. Inverse Problems, 25, 25pp.

- Doumic, M. and Tine, L.M., *Estimating the Division Rate of the Growth-Fragmentation Equation*, J. of Math. Biol., 2012, accepted.
- Prigent, S. Ballesta, A. et al., *An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation*, Plos One, 2012.

Doumic, M., Hoffmann, M., Krell, N. and Robert, L., *Statistical Estimation of a Growth-Fragmentation Model Observed on a Genealogical Tree*, submitted.

2. Regularity of the map

generalization of a result of B. Perthame, J.P. Zubelli, Inv. Prob., 2007

Definition (Definition from MD, L.M. Tine, JMB, 2012)

Let g, k satisfying the assumptions of the "eigenvalue theorem". For a constant $b \ge 0$ and functions $f_0 \in L_0^1$, $f_\infty \xrightarrow[x \to +\infty]{} \infty$. We define $\mathcal{D}(b, f_0, f_\infty) :=$ $\left\{ B \in L^{\infty}_{\text{loc}}(\mathbb{R}^*_+) \cap \mathbb{P}, \quad \text{supp}(B) = [\tilde{b} \le b, +\infty), \quad \frac{B}{g} \le f_0, \quad \frac{xB}{g} \ge f_\infty \right\}.$

Theorem (from M.D., L.M. Tine, JMB, 2012)

Let parameters g and k satisfy the assumptions of this def. Then

- i) Γ : B → (λ₀, N) is injective and continuous under the L[∞]weak-*topology for B from any set D(b, f₀, f_∞) to R⁺₊ × L¹(R₊) ∩ L[∞](R₊).
- ii) Let $\frac{1}{g} \in L^2_0$. Then Γ is locally C^1 under the strong topology of $L^2(\mathbb{R}_+) \cap \mathcal{D}(b, f_0, f_\infty)$.

Protein polymerization: measures

Extensions of the model

Variability: $\frac{\partial}{\partial t}n(t, x, v) + \frac{\partial}{\partial x}(v \times n(t, x, v)) = -B(x)n(t, x, v) + 2\int_{x}^{\infty}\int_{0}^{\infty}B(y)k(y, x)\rho(v', v)n(t, y, v')dy, dv'$

with $\int_0^\infty \rho(v',v) dv = 1$

Extensions of the model

Variability: $\frac{\partial}{\partial t}n(t, x, v) + \frac{\partial}{\partial x}(v \times n(t, x, v)) = -B(x)n(t, x, v) + 2\int_{x}^{\infty}\int_{0}^{\infty}B(y)k(y, x)\rho(v', v)n(t, y, v')dy, dv'$ with $\int_{0}^{\infty}\rho(v', v)dv = 1$

Age + variability:

$$\frac{\partial}{\partial t}n(t,a,x,\mathbf{v}) + \frac{\partial}{\partial x}(\mathbf{v}xn(t,a,x,\mathbf{v})) = -B(a,x)n(t,a,x,\mathbf{v}),$$

$$n(t,a=0,x,\mathbf{v}) = 2\int_{x}^{\infty}\int_{0}^{\infty}B(a,y)k(y,x)\rho(\mathbf{v}',\mathbf{v})n(t,a,y,\mathbf{v}')dyd\mathbf{v}'da$$

(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg, 1983 - Mischler, Perthame, Ryzhik, 2002,...)

Numerical Schemes

(H.T. Banks, MD, C. Kruse, submitted)

Example on a simple nucleation+polymerization case:

$$\begin{split} \frac{dV}{dt} &= -k_{l}^{+}V + k_{l}^{-}V^{*}, \\ V^{*} &= c_{0} - V - \sum_{i=i_{0}}^{N_{0}}ic_{i} - \int_{N_{0}}^{\infty}xc^{\epsilon}\,dx, \\ \frac{dc_{i_{0}}}{dt} &= k_{on}^{N}(V^{*})^{i_{0}} - k_{off}^{N}c_{i_{0}} - k_{on}^{i_{0}}c_{i_{0}}V^{*}, \\ \frac{dc_{i}}{dt} &= V^{*}(k_{on}^{i-1}c_{i-1} - k_{on}^{i}c_{i}), \quad i \leq N_{0} \\ \partial_{t}c^{\epsilon}(x,t) &= -V^{*}\partial_{x}(k_{on}c^{\epsilon}(x,t)), \quad x \geq N_{0} \end{split}$$

59

Numerical Schemes

(H.T. Banks, MD, C. Kruse, submitted)

(a) Convergence plot for $N_0 = 100$; (b) for $N_0 = 500$

(日)、(型)、(E)、(E)、(E)、(O)()

60

Standard Errors for Parameters Using WLS

Estimated parameters $\hat{\theta} = (k_l^+, ..., i_{max})$ (vector length $\kappa_{\theta} = 9$) Covariance matrix defined by

$$SE_k = \sqrt{\Sigma_{kk}(\hat{\theta})}, \quad k = 1, ..., 9,$$

where

$$\Sigma(\hat{\theta}) = \hat{\sigma}^2(\chi^T(\hat{\theta})W(\hat{\theta})\chi(\hat{\theta}))^{-1}.$$

Here χ is the sensitivity matrix of size $n \times \kappa_{\theta}$ (*n* number of data points and κ_{θ} number of estimated parameters) and *W* defined by

$$W^{-1}(\hat{\theta}) = \operatorname{diag}(M(t_1; \hat{\theta})^{2\gamma}, \dots, M(t_n; \hat{\theta})^{2\gamma}).$$

Approximation of the variance

$$\sigma^{2} \approx \hat{\sigma}(\hat{\theta})^{2} = \frac{1}{n - \kappa_{\theta}} \sum_{i=1}^{n} \frac{1}{M(t_{i}; \hat{\theta})^{2\gamma}} (M(t_{i}, \hat{\theta}) - data_{i})^{2}.$$
Standard Errors for Parameters Using WLS

To obtain a finite standard error using asymptotic theory, the 9 × 9 matrix $F = \chi^T(\hat{\theta})W(\hat{\theta})\chi(\hat{\theta})$ must be invertible. Aboveseen problem: good fit of the curve and good residuals.

BUT:

- Condition number of $F = \chi^T(\hat{\theta}) W(\hat{\theta}) \chi(\hat{\theta})$ is $\kappa = 10^{24}$.
- near linear dependence between certain rows of F, hence the large condition number.

CONCLUSION:

- non uniqueness of the parameters
- At least for 1 curve at a time...

Figure : Comparison between the empirical results for α_{opt} (blue) and err_{opt} (green) and their relative bounds given by the Equations (1)-(2).