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Conservation laws

e Hyperbolic Conservation Laws:

us + V- f(u) =0 x€ Rt >0,
u(x,0) = ug(x) r € R4,

e Hyperbolic conservation laws and convection dominated PDEs
play an important role arise in applications
— gas dynamics
— modelling of shallow waters
— weather-forecasting
— magneto-hydrodynamics

— semiconductor device simulation
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Conservation laws

e Gas dynamics
u= (p,pv,E)", f(u) = (pv, pv* +p,v(E +p))"
e Modelling of shallow waters
w= (h,hv)!, f(u) = (hv, hv* + gh*/2)

up + (u?/2), =0 xz€R,t>0,

[ Burgel“S equa’tlon: { ’U;(CE, O) — 0.5 + SlIl(ﬂ'ZU) S R?
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Conservation laws

e Monotone Schemes, the first order schemes

— Godunov scheme

— Lax-Friedrichs scheme

— EO(Engquist-Osher) scheme
— Up-Wind scheme

e TVD (Total-Variation-Diminishingschemes
e ENO (Essentially Non-Oscillatory) scheme
e WENO (Weighted Essentially Non-Oscillatory) scheme

e Discontinuous Galerkin finite element methods
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What 1s DG Method?

Discontinuous Galerkin (DG) method is a high order finite element method.

DG schemes are very important numerical methods for convection domi-
nated PDEs.

We consider conservation law: u; + f(u), =0, wu(x,0) = ug(z).

Multiplying with a test function v, integrate over a cell I; = [x;_1 /2, Ti+1/2],

and integrate by parts:

/ utvd:L’ — / f(U)’U,dZU + f(ui_|_1/2)?}i+1/2 — f(ui_l/g)vi_l/g =0
I; I;

(2
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What 1s DG Method?

Now assume both the solution v and the test function v come from a
finite dimensional approximation space V},, which is usually taken as the

space of piecewise polynomials of degree up to k:

th:{p:pfiEpk(l’i)vizla"'7N}

However, the boundary terms f(u; 1 /2) and v;41/2 etc. are not well defined
when u and v are in this space, as they are discontinuous at the cell

interfaces.
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What 1s DG Method?

From the conservation and stability (upwinding) considerations, we take

e A single valued monotone numerical flux to replace f(u;y1/2):

AN

Jiv1/2 = f(ui_—{-l/27 UZH/Q)

where f(u;u) = f(u) (consistency); f(T,]) (monotonicity) and f is Lips-
chitz continuous with respect to both arguments.

e Values from inside I; for the test function v

_|_

Yi_1/2

Vit1/20
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What 1s DG Method?

Hence the DG scheme is: find v € V}, such that

/ wvdr — / f(u)v’dx + fi+1/207;1/2 - fi—1/2?fi+_1/2 =0 (1)
I; I;

(]

for all v € V,,.
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What 1s DG Method?

e A local orthogonal basis over I;:

2
v i L — Xy i r — I 1
=1 P - W - (A%/Q) S

e The numerical solution u"(z,t):

u(x,t) = Z ugl)(t)vl(i) (x), for x € I,

e The degrees of freedom u( )(t) are the moments defined by

1 i
ugl)(t) = —/ uh(:c,t)vl( )(a:)d:c, [=0,1,--- K

a; I;

where a; = [, (v . ('L) ))?dzx.
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What 1s DG Method?

l L . o
e Evolve the moments ug ), resulting in a semi-discretization scheme

as:

d l 1 d i rro— 1
priCa (— / S, t) o @)+ f gl )0 ()

A

—fu gl /2)1);@)(332._1/2)) —0, 1=0,1,---,k (2)
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Time discretization

Using explicit, nonlinearly stable high order Runge-Kutta time discretiza-
tions .[Shu and Osher,JCP,1988]

The semidiscrete scheme (2) is written as:
uy = L(u)

is discretized in time by a nonlinearly stable Runge-Kutta time discretization,
e.g. the third order version.

u) = w4+ AtL(u™)

3 1 1

u? = Zu” + Zu(l) + ZAtL(u(l))
1 2 2

u"tt = gu” + —?;u@) + §AtL(u(2)).
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The Limiters

e The minmod based TVB limiter.( Cockburn and Shu, Math. Comp. 1989)

e Moment limiter. (Biswas, Devine and Flaherty, Appl. Numer. Math,
1994)

e A modification of moment limiter.(Burbean, Sagaut and Brunean, JCP,
2001)

e The monotonicity preserving (MP) limiter.(Suresh and Huynh,JCP,1997)
e A modification of the MP limiter. (Rider and Margolin, JCP, 2001)
e WENO limiter ( Qiu and Shu, STAM. J. Sci. Comput. 2005)

e HWENO limiter ( Qiu and Shu, JCP, 2004, Computers & Fluids 2005)

14_5_3 13



Advantages of the DG method:

e Easy handling of complicated geometry and boundary conditions (com-

mon to all finite element methods). Allowing hanging nodes in the mesh;

e Compact. Communication only with immediate neighbors, regardless of

the order of the scheme;

e Explicit. Because of the discontinuous basis, the mass matrix is local to

the cell, resulting in explicit time stepping (no systems to solve);

e Parallel efficiency. Achieves 99% parallel efficiency for static mesh and over
80% parallel efficiency for dynamic load balancing with adaptive meshes

(Flaherty et al.);

14_5_3 14



Advantages of the DG method:

e Provable cell entropy inequality and Lo stability, for arbitrary scalar equa-
tions in any spatial dimension and any triangulation, for any order of

accuracy, without limiters;

e At least (k + 1/2)-th order accurate, and often (k + 1)-th order accurate
for smooth solutions when piecewise polynomials of degree k are used,

regardless of the structure of the meshes.
e Fasy h — p adaptivity.

e Stable and convergent DG methods are now available for many nonlinear
PDEs containing higher derivatives: convection diffusion equations, KdV

equations, ...
14-5-3 15



A example of DG

Linear equation u; + u, = 0 with initial condition:

< 2
u(x.0) = — 4
(2,0) §%,or§<x§2

with periodic boundary condition. The exact solution is: u(z,t) = ug(x — t).

=2
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History of the DG method:

Here 1s a (very incomplete) history of the study of DG methods:

° 1973: First discontinuous Galerkin method for steady state linear scalar
conservation laws (Reed and Hill).

° 1974: First error estimate (for tensor product mesh) of the discontinuous
Galerkin method of Reed and Hill (LeSaint and Raviart).

° 1986: Error estimates for discontinuous Galerkin method of Reed and Hill
(Johnson and Pitkaranta).

° 1989-1998: Runge-Kutta discontinuous Galerkin method for nonlinear
conservation laws (Cockburn, Shu, ...).

14-5-3 17



History of the DG method:

14-5-3

1994: Proof of cell entropy inequality for discontinuous Galerkin method
for nonlinear conservation laws in general multidimensional triangulations

(Jiang and Shu).

1997-1998: Discontinuous Galerkin method for convection diffusion
problems (Bassi and Rebay, Cockburn and Shu, Baumann and Oden, ...).

2002: Discontinuous Galerkin method for partial differential equations
with third or higher order spatial derivatives (KdV, biharmonic, ...) (Yan
and Shu, Xu and Shu, ...)

2007: Discontinuous Galerkin method for two-medium flow (Qiu, Zhu,
Liu and Khoo)
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Collected works on the DG methods:

e Discontinuous Galerkin Methods: Theory, Computation and
Applications, B. Cockburn, G. Karniadakis and C.-W. Shu, editors,
Lecture Notes in Computational Science and Engineering, volume
11, Springer, 2000. (Proceedings of the first DG Conference)

e Journal of Scientific Computing, special issue on DG methods, 2005,
2009.

e Computer Methods in Applied Mechanics and Engineering, special
1ssue on DG methods, 2006.
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Cell Entropy inequality of DG

It is well known that weak solutions of

Uy + f(u)ﬂc =0 (3)

may not be unique and the unique, physically relevant weak solution (the

so-called entropy solution) satisfies the following entropy inequality:
Uu)+ F(u), <0 (4)

in distribution sense, for any convex entropy U(u) Satisfying U'(u) >0
and the corresponding entropy flux F'(u f U'(u) f'(u)du.
[t will be nice if a numerical approx1mat10n to (3) also shares a similar

entropy inequality as (4).

14_5_3 20



Cell Entropy inequality of DG

We recall the DG scheme is: find v € V}, such that

/ uvdr — / f(u)v’da: + fz'+1/2?i,;r1/2 - ]Ei—l/ij__l/g =0 (1>
I; I;

7

for all v € Vj,. Let v =u and U(u) = u?/2, then we have:

[ Ve~ [ ddn+ fiopigs - i g =0 ©
I; I;

We denote F(u) = [" f(u)du, then the (5) can be written as:

~

/I Ulu)ide — F(ug,, ) + F<u;r—1/2) T fi+1/2uz'_+1/2 - fi—1/2u:r—1/2 =0 (6)

%
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Cell Entropy inequality of DG

Let the numerical entropy flux ﬁ’iﬂ /2 = —F (. /2) + fi+1 /2U; 11 /s then
/ U(u)idr — Fz’—|—1/2 -+ Fz’-1/2 +0;_12=0 (7)
I;
with

~

It is easy to verity F'is consistent with the entropy flux F(u) = [“U'(u) f'(u)du
for U(u) = u?/2.
For any monotone flux fi; /2 = f (Uit1 /2 ul,, /9), we have

Oi_1/2 = (ﬁl(f) — fi—1/2)(u;L_1/2 — Ui__l/g) >0

+

1 and u.

from a mean value theorem, ¢ is a value between u; i1/2



Cell Entropy inequality of DG

Proposition 1. The solution u to the semi-discrete DG scheme (1) sat-

isfies the following cell entropy inequality

/ U(u)dr — Fi+1/2 + Fi—1/2 <0 (8)

I;

for the square entropy U(u) = u?/2, and some consistent entropy flux

A

Fivijo = F(ug,y g, 1y, ) satistying, F(u,u) = F(u).

Proposition 2. For periodic or compactly supported boundary condition-
s, the solution u to the semi-discrete DG scheme (1) satisfies the following

L?-stability:

d
— [ (u)?dz <0
dt |

or
Jul )2 < JJul:, 0)]l2. 3



Local DG for convection-diffusion problem

We consider the one-dimensional convection-diffusion equation:

up + f(u)e = (a(u)ug), (9)

with a(u) > 0. We rewrite this equation as the system:

us + fu)e = (0(w)q)z, ¢— Blu)y =0 (10)
where y
b(u) = +v/a(u), B(u) :/ b(u)du (11)
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Local DG for convection-diffusion problem

Hence the LDG scheme is: find u, q € V}, such that

[ o / (fw) = bw))'da (12)

)

A A A

b )z+1/2’U +1/2 (f - bQA)i—1/2’UZ-+_1/2 =0

]?
/ qpdr + / u)p'dr — z+1/2p2+1/2 + By 1/20; 12 =0 (13)

for all v,p € V},.
Here, all the "hat” terms are the numerical fluxes, namely single-valued
functions defined at the cell interfaces which typically depend on the dis-

continuous numerical solution from both sides of the interface.

14-5-3 25



Local DG for convection-diffusion problem

The convection flux f should be chosen as a monotone flux. However,
the upwinding principle is no longer a valid guiding principle for the design
of the diffusion fluxes ZA),qA and B.

To guarantee the stability of the scheme (12)-(13), we will discuss a

particularly attractive choice, called alternating fluxes, defined as:

-~ Bu")— B(u") A _
b= i=q", B=DB 14
——— (=4 (u™) (14)
" B(u) = B(w)
A U — U A
b — 7 p— o B — B T ].5
——— (=4, (u™) (15)
The important point is that, ¢ and B should be chosen from different
directions.
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Local DG for convection-diffusion problem

Similar to the case for hyperbolic conservation laws, we have the fol-
lowing " cell entropy inequality” for the LDG method (12)-(13).

Proposition 3. The solution u, q to the semi-discrete DG scheme (12)-
(13) satisfies the following ”cell entropy inequality”:

/ (u*/2); + ¢*)dw — Fiyrpo + Fj1y2 <0 (16)

I;

for some consistent entropy flux
” N AT - + +
Fipiy2 = F(ui+1/27 Dir1/20 Yig1/2 qi—|—1/2)

satisfying, F'(u, ¢, u, q) = F(u)—ub(u)q, where as before F(u) = [" uf(u)du.
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Local DG for convection-diffusion problem

Proposition 4. For periodic or compactly supported boundary condi-
tions, the solution wu, ¢ to the semi-discrete DG scheme (12)-(13) satisfies
the following L*-stability:

d
- (u)Qdaz—l—Q/ ¢*dr <0
or t
||U('>t)||2+2/O lg(, 7)ll2d7 < [lu(-, 0)]l2.
14-5-3

28



DG with Non-polynomial basis

e The main objective: to study DG method when the approximation

space V}, consists of non-polynomial functions.

e This is made possible because of the DG framework, which does not

require any continuity at element interfaces.

e The motivation to use non-polynomial finite element spaces is to
obtain better approximations for specific solutions of PDEs, such
as the boundary layer solutions and oscillatory solutions, for which
exponential / trigonometric functions instead of polynomials as basis
functions for the new approximation spaces are expected to yield

better numerical results.
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DG with Non-polynomial basis

We consider the trigonometric polynomial space: V}* = {p : p|; €
T*(I;)}, the trigonometric polynomial spaces of degree at most k on the

cell I;. We adopt the following local orthogonal basis over I;, {vl(i)(:v),l =
0,..,k}:

vy (z) =1,
’Uii)(l‘) = sin(a(r — x;)),
Do\ sin(ha/2)
fué)(a:) = cos(a(r — x;)) — a2

sin((a+ 1)(z — x;)),
sin(h(a+1)/2)

cos((a+1)(xz —z;)) — ha+1)/2

14_5_3 30



DG with Non-polynomial basis

Then, the numerical solution u"(z,t) in the space V;*¥ can be written as:

k
Z ugl)(t)vl(i) (x), for x € I

(=0

u'(x,t)

and due to the local orthogonal basis the degrees of freedom (the moments)
u(l)(t) are defined by

1

¥ N X d!il: / b (@ —
u; (t . uw(z, ), (2)dx, 1 =0, ..., k.
( ) f[z(vl(Z)( ))2 I; ( ) l ( )
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DG with Non-polynomial basis

In order to determine the approximate solution, we evolve the degrees of

freedom ugl)(t) by using the following relation:

l _ i
p 5) /f (x,1) —vl)(x)dm f(ui+1/2,u;;1/2)vl()(miﬂ/z)
FF Uy oty )0 (@imag2) ar, 1=0, ..k, (17)

where a; = [, (v 3 ))?dz.

The semi-discrete scheme (17) is discretized in time by a nonlinearly
stable Runge-Kutta time discretization, e.g. the third order TVD Runge-
Kutta method.
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DG with Non-polynomial basis

u; + (u?/2), = 0. u(z,0) = 0.5 + sin(wz). Periodic boundary conditions.

t =0.5/7, L' and L* errors and numerical orders of accuracy.

RKDG-T, a =7 RKDG-A
cells | L' error | order | L*™ error | order | L' error | order | L™ error | order
10 1.64E-3 2.49E-2 1.76 E-3 2.92E-2

20 | 1.94E-4 | 3.08 | 3.76E-3 | 2.73 | 2.07E-4 | 3.08 | 4.55E-3 | 2.68

40 | 2.51E-5 | 2.96 | 6.50E-4 | 2.53 | 2.6VE-5 | 296 | 7.59E-4 | 2.58
80 | 3.21E-6 | 2.97 | 9.14E-5 | 2.83 | 3.38E-6 | 2.98 | 1.06E-4 | 2.84
160 | 4.08E-7 | 2.98 | 1.27E-5 | 2.85 | 4.2VE-7 | 299 | 1.46E-5 | 2.86
320 | 5.15E-8 | 2,99 | 1.68E-6 | 2.92 | 5.37E-8 | 2.99 | 1.92E-6 | 2.93
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2D Euler equations. p(z,y,0) = 14 0.2(sin(7x) + sin(7y)), u(z,y,0) = 0.7

v(z,y,0) = 0.3, p(x,y,0) = 1. Periodic boundary conditions.

t =1.0. L! and L* errors and numerical orders of accuracy.

RKDG-T. a = 7
cells L' error L*° error
10x10 7.89E-12 4.58E-11
20x 20 2.47E-14 1.62E-13
40x40 7.75E-15 4.60E-14
80x &0 4.45E-14 2.12E-13
160x160 1.69E-13 7.09E-13
RKDG-T. o = 1.0 RKDG-A
cells L' error | order | L™ error | order | L' error | order | L™ error | order
10x10 3.33E-4 2.02E-3 3.71E-4 2.25E-3
20% 20 6.28E-5 | 2.41 3.84E-4 | 2.40 | 6.99E-5 | 2.41 4.27E-4 2.40
40x40 9.79E-6 | 2.68 5.91E-5 2.70 | 1.09E-5 | 2.68 6.57E-5 2.70
0% &0 1.32E-6 | 2.88 7.95E-6 2.89 | 1.47E-6 | 2.88 8.84FE-6 2.89
160x160 | 1.69E-7 | 2.97 1.01E-6 2.97 | 1.88E-7 | 2.97 1.12E-6 2.97

14-5-3
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One dimensional Euler equations, with initial condtion:

()T — (3.857143,2.629369, 10.333333)7, 2 < —4,
PP = (14 0.25in(52),0,1)7, x> —4.

Computed densities at ¢ = 1.8 with 200 cells. RKDG-T with o = 1.0

(plusses) and RKDG-A (squares) against the reference solution (solid line).
e 35
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( (2 — xsin(1.572?),1,1)7T, —1<z<—4%,
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Computed densities at t = 6 with 100 cells. RKDG-T with a = 1.0
(plusses) and RKDG-A (squares) against the reference solution (solid line).



Lax-Wendroftf DG

* The method relies on converting all the time derivatives in a temporal
Taylor expansion into spatial derivatives by repeatedly using the PDE and
its differentiated versions.

*The spatial derivatives are then discretized by the DG approximations.

» The nonlinear limiter for controlling spurious oscillations is performed
once per time step. LWDG is more compact than RKDG.

» The Lax-Wendroff time discretization procedure 1s more cost effective
than the Runge-Kutta time discretizationsfor certain problems including
two dimensional Euler systems of compressible gas dynamics.
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Lax-Wendroftf DG

Consider conservation law:
u + fu), =0, wu(z,0) =up(x). (18)
By a temporal Taylor expansion we obtain

At? At
u(x,t + At) = u(x, t) + Atuy + — U -+ g Ut +.... (19)

in order to obtain (k+1)th order accuracy in time, the first & + 1
time derivatives: wuy, ..., %—:Z%D%‘— shoulkd be approximated. We will
proceed up to third order in time in here, although the procedure

can be naturally extended to any higher orders.
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Lax-Wendroftf DG

The temporal derivative terms in (19) can be replaced with the
spatial ones using the governing equation (18):

ug = —f(u)e = —f'(w)us,
uy = —(f'(W)w)e = — () uguy — f'(u) g,
oy = — [ () (ue)? = f'(1)thsa,
ue = —(f"(w) (we)” + f'(w)ug)s.

Then we can rewrite the approximation to (1) up to third order as:

u(x,t+ At) = u(x, t) — AtF,. (20)

with F = f + & f'(u)uy + 25 (F"(u)(ur)? + f'(u)ug). The standard

discontinuous Galerkin method is then used to discretize F,.
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Lax-Wendroftf DG

ul (¢ = ulP (1)

1 d X i ) i
ta (‘/ F o ()i + ot (wi112) = Fioapo ><xi_1/2>> L
[ I;

=01,k (21)

where Fiﬂ /2 1s a numerical flux which depends on the values of the
numerical solution u” and its spatial derivatives at the cell interface
Ti+1/2, both from the left and from the right. We use the following
simple Lax-Friedrichs flux

A 1 B B
Figr2 = 9 <F'H—1/2 + Fz’j—l/Z - C“(u;:lm - ui+1/2)) ;

+ +
where Ui s and Fi+1/2
tinuous solution " and the flux F' at the cell interface ;4 /2, and
a = max, | f'(u)|.

14-5-3

are the left and right limits of the discon-
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Lax-Wendroftf DG

Consider the two dimensional conservation laws:

ug + f(u) + g(u), =0,
{ /U’(x? Y, O) — Uo(ﬂf, y) (22)

By a temporal Taylor expansion we obtain

At? At
u(x,y,t + At) = u(z,y,t) + Atuy + — Ut o+ g U 4+
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Lax-Wendroftf DG

For third order accuracy in time we would need to reconstruct three
time derivatives: uy, uy, uye. We again use the PDE (22) to replace
time derivatives by spatial derivatives.

w = —f(u)y — g(u)y = —f'(wu, — g'(v)uy,
ue = — ([ (W)= (g (Wue)y = = (f"(Wuzwe+ (W) ua+g" (W uyuetg' (w)uy),
g = —(f"(w) () + f(Wtes + ¢" (W) uzuy + g'(u)ug,),
ye = = ([ (Wuyuy + (W) uey + " (u)(uy)* + g'(w)uy,),
wir = —(f" () (ue)® + f/(w)un)e — (9" (w)(ue)® + g’ (w)ug),.
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Lax-Wendroftf DG

Then we rewrite the approximation to (22) up to third order as:

u(x,t + At) = u(z, t) — At(F, + Gy), (23)
with
A At?
F = f + S f () + S (£ (@) w) + /()
A At?
G = g+ ol (W + (9" () (w)* + g (W),

The standard discontinuous Galerkin method is then used to dis-

cretize F, and G, in (23).
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Numerical Results

LWDG RKDG

N | L error | order | Lo, error | order | L error | order | Lo, error | order

10 | 2.72E-03 6.46E-03 2.32E-03 7.49E-03

20 | 6.25E-04 | 2.12 | 2.04E-03 | 1.67 | 4.90E-04 | 2.24 | 2.07E-03 | 1.85

40 | 1.52E-04 | 2.04 | 5.58E-04 | 1.87 | 1.16E-04 | 2.08 | 5.46E-04 | 1.93
P 80 | 3.75E-05 | 2.02 | 1.45E-04 | 1.94 | 2.85E-05 | 2.03 | 1.40E-04 | 1.97

160 | 9.32E-06 | 2.01 | 3.69E-05 | 1.97 | 7.08E-06 | 2.01 | 3.53E-05 | 1.98

320 | 2.33E-06 | 2.00 | 9.31E-06 | 1.99 | 1.76E-06 | 2.00 | 8.89E-06 | 1.99

10 | 6.11E-04 1.50E-03 2.78E-03 4.51E-03

20 | 5.48E-05 | 3.48 | 2.23E-04 | 2.75 | 1.06E-04 | 4.73 | 4.46E-04 | 3.34

40 | 4.67E-06 | 3.55 | 2.06E-05 | 3.43 | 2.31E-05 | 2.18 | 4.51E-05 | 3.31
P?2 | 80 | 4.69E-07 | 3.32 | 1.82E-06 | 3.51 | 3.27E-06 | 2.82 | 5.36E-06 | 3.07

160 | 5.32E-08 | 3.14 | 2.28E-07 | 2.99 | 4.21E-07 | 2.96 | 6.97TE-07 | 2.94

320 | 6.45E-09 | 3.04 | 2.86E-08 | 3.00 | 5.30E-08 | 2.99 | 9.87E-08 | 2.82

14-5-3

Euler equations. p(x,0) = 1+0.2sin(7wz), v(x,0) = 1, p(x,0) = 1. LWDG
comparing with RKDG. Local Lax-Friedrichs flux, using N equally spaced
cells. t =2. Ly and L, errors of the density p.

44



Numerical Results

LWDG RKDG

N x N | Ly error | order | L., error | order | Ly error | order | L., error | order

10 x10 | 7.19E-02 5.37E-01 6.42E-02 6.66E-01
20x20 | 1.52E-02 | 2.25 | 1.99E-01 | 1.44 | 1.54E-02 | 2.06 | 2.47E-01 | 1.43
Pl 40x40 | 3.66E-03 | 2.05 | 6.73E-02 | 1.56 | 3.04E-03 | 2.34 | 4.33E-02 | 2.51
80x80 | 5.69E-04 | 2.69 | 9.13E-03 | 2.88 | 5.90E-04 | 2.37 | 9.16E-03 | 2.24
160x160 | 1.32E-04 | 2.10 | 2.33E-03 | 1.97 | 1.42E-04 | 2.05 | 2.41E-03 | 1.93

10 x10 | 2.99E-02 4.96E-01 2.98E-02 5.03E-01
20x20 | 1.66E-03 | 4.17 | 4.01E-02 | 3.63 | 1.81E-03 | 4.04 | 4.09E-02 | 3.62
P? | 40x40 | 1.73E-04 | 3.26 | 5.82E-03 | 2.78 | 1.73E-04 | 3.38 | 6.04E-03 | 2.76
80x80 | 2.09E-05 | 3.05 | 9.51E-04 | 2.61 | 2.07TE-05 | 3.06 | 1.00E-03 | 2.59
160x160 | 2.52E-06 | 3.05 | 1.30E-04 | 2.87 | 2.49E-06 | 3.06 | 1.38E-04 | 2.87

14-5-3

Burgers equation u; + (u*/2), + (u?/2), = 0. Initial condition u(z,y,0) =
0.5 4+ sin(7(x + y)/2) and periodic boundary conditions. LWDG compar-
ing with RKDG. Local Lax-Friedrichs flux, t = 0.5/7. L; and L, errors.
Uniform meshes with N x N cells.
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Numerical Results

LWDG RKDG
N x N | Ly error | order | L, error | order | Ly error | order | L., error | order
10x10 | 2.59E-02 7.55E-02 3.48E-02 7.34E-02
20x20 | 8.76E-03 | 1.56 | 3.58E-02 | 1.08 | 6.89E-03 | 2.34 | 2.74E-02 | 1.42
Pl 40x40 | 1.96E-03 | 2.16 | 1.06E-02 | 1.76 | 1.21E-03 | 2.51 | 7.36E-03 | 1.89
80x80 | 1.65E-04 | 3.57 | 1.41E-03 | 2.91 | 2.33E-04 | 2.37 | 2.02E-03 | 1.87
160x160 | 2.34E-05 | 2.82 | 2.87E-04 | 2.29 | 5.19E-05 | 2.17 | 6.45E-04 | 1.65
10x10 | 2.12E-03 7.42E-03 5.44E-03 1.39E-02
20x20 | 2.45E-04 | 3.12 | 9.98E-04 | 2.89 | 3.14E-04 | 4.11 | 1.22E-03 | 3.51
P? | 40x40 | 2.44E-05| 3.33 | 1.30E-04 | 2.94 | 2.66E-05 | 3.56 | 1.29E-04 | 3.24
80x80 | 2.43E-06 | 3.33 | 1.72E-05 | 2.92 | 2.35E-06 | 3.50 | 1.71E-05 | 2.92
160x160 | 3.16E-07 | 2.94 | 2.09E-06 | 3.04 | 2.19E-07 | 3.43 | 2.17E-06 | 2.97

14-5-3

Euler equations.

Initial condition p(x,y,0) = 1 + 0.2sin(7w(z + y)),
u(x,y,0) = 0.7, v(z,y,0) = 0.3, p(z,y,0) = 1 and periodic boundary condi-
tions. LWDG comparing with RKDG. Local Lax-Friedrichs flux, t = 2.0. L;
and L., errors for the density p. Uniform meshes with N x N cells.
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Numerical Results

Reference
m} LWDG2
+ RKDG2

Density

O-IIIIlllllllllllllllIllll

De nsity

Reference
[m} LWDG3
+ RKDG3

Euler equations. The problem of shock interaction with entropy waves,

initial condition

(p,v,p) = (3.857143, 2.629369, 10.333333) for = < —4;

(p,v,p) = (1 +esin(52),0,1) for x > —4.

e = 0.2. The computed density p is plotted at t = 1.8

14-5-3
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Numerical Results

Reference
LWDG2
RKDG2
2 2
[ »n
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05 1 1.5
X

Details of the oscillatory portion of the solution between

r=0.50and xr = 2.5
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Numerical Results

r r

B Reference B Reference
6 O LWDG2 6 [m] LWDG3

[ + RKDG2 C + RKDG3

Density
Density

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Blast waves of Euler equation with the initial condition:
(p,v,p) = (1,0,1000) for 0 < x < 0.1; (p,v,p) = (1,0,0.01) for 0.1 <z < 0.9;
(p,v,p) = (1,0,100) for 0.9 < x.

The computed density p is plotted at ¢ = 0.038
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Numerical Results

z z
2 r 2
o N )
Qo 3 o
_331"_"' Reference
¥ O LwbG2
- 4+ RKDG2
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1 ] N 1 ]
8 63 0.73 0.83 863 073 0.83
X X

Details of the oscillatory portion of the solution between
xr=0.63 and x = 0.83
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Numerical Results

Double Mach reflection problem. Second order (k=1) LWDG (top) and
RKDG (bottom).
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Numerical Results

Double Mach reflection problem. Third order (k=2) LWDG (top) and RKDG
(bottom).
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Zoomed-in region to show more details. Top: second order (k=1); bottom:
third order (k=2). Left: LWDG; Right: RKDG.
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Numerical Results

Schemes

LWDG

RKDG

k=1

k=2

k=1

k=2

M

0.01

100

0.01

100

0.01

100

0.01

100

120 x 30

95.59

77.44

740.96

569.54

131.18

86.20

1071.05

708.64

240 x 60

789.10

676.51

5925.01

4860.05

920.28

737.04

8361.42

6061.02

CPU time (in seconds) for the LWDG and RKDG methods to compute the

double Mach reflection problem for the two meshes of 120 x 30 and 240 x 60
cells.

The computation is performed on a Compaq Digital personal workstation,
600au alpha-599MHZ with 256 MB ram.

LWDG i1s more compact than RKDG and the Lax-Wendroff time
discretization procedure 1s more cost effective than the Runge-
Kutta time discretizations.

14-5-3 54



References

14-5-3

B. Cockburn and C.-W. Shu: Runge—Kutta Discontinuous Galerkin
Methods for Convection-Dominated Problems, J. Sci. Comput., 16 (2001),
173-261.

Y. Xu and C.-W. Shu: Local Discontinuous Galerkin Methods for High-
Order Time-Dependent Partial Differential Equations, Commun. Comput.
Phys. 7(2010), 1-46.

L. Yuan and C.-W. Shu: Discontinuous Galerkin method based on non-
polynomial approximation spaces, J. Comput. Phys., 218 (2006), 295-323.

J. Zhu and J. Quu: WENO Schemes and Their Application as Limiters for
RKDG Methods Based on Trigonometric Approximation Spaces, J. Sci.
Comput., 55 (2013), 606-644.

J. Qiu, M.Dumbser and C.-W. Shu: The discontinuous Galerkin method
with Lax-Wendroff type time discretizations, Comput. Method Appl. Mech.
Engrg, 194(2005), 4528-4543.

55






