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Outline of the talk

Derive boundary conditions for the moving contact line
(MCL) problem based on thermodynamics principles and
molecular dynamics

Numerical methods and some applications

Wetting transition on textured surfaces



Contact Lines

Two immiscible fluids or two phases of one fluid in contact with
a solid surface:

U

Solid

θ

Fluid II
Fluid I

θ: the contact angle

The static case (U = 0):

Young-Laplace equation for the fluid interface: γκ+ [p] = 0

Young’s relation for the contact angle: γ2 − γ1 = γ cos θY



The Contact Line Singularity

Huh/Scriven 1971, Dussan/Davis 1974
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−ηi∆u + ∇p = f in Ωi

∇ · u = 0

No-slip boundary condition

interface condition

ψ = r ((Cφ+ D) cosφ+ (Eφ+ F ) sin φ)

∇u ∼
1
r
,

∫

|∇u|2dV = +∞

“corner singularity”



The Slip Region

Physically, the no-slip boundary condition does not hold near
the contact line — this has been confirmed by molecular
dynamics simulation (Koplik, Qian/Wang/Sheng, Ren/E, ...):
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Figure: The slip velocity along the wall. The peak is at the CL.



Derivation of BCs based on “first principles”

Derive the form of the BCs based on thermodynamic
principles.

What is the simplest form of the boundary conditions that
is consistent with the 2nd law of thermodynamics?

Use molecular dynamics to compute the details of the
constitutive relations needed in the BCs.



A Liquid Droplet on a Solid Substrate

Γ

2Γ Γ1 Γ2

Θ

Ω1
Ω2

w

Total energy (assume the substrate is at rest):

E =
∑

i=1,2

∫

Ωi

1
2
ρi |u|

2 dx + (γ1 − γ2)|Γ1| + γ|Γ|



Dynamic Equations

Conservation of mass and momentum for incompressible
fluids in Ωi , i = 1,2:

ρi (∂tu + u · ∇u)= −∇p + ∇ · τd

∇ · u = 0

linear constitutive relation for the viscous stress:

τd = ηi

(

∇u + (∇u)T
)

the interface conditions:

− [p] + n · [τd ] · n = γκ

t · [τd ] · n = 0

where n and t are the normal and tangent to the fluid
interface; κ is the curvature.



The Rate of Energy Dissipation

dE
dt

= −
∑

i=1,2

∫

Ωi

ηi |∇u|2 dx

+
∑

i=1,2

∫

Γi

(t · τd · n) us dσ

+γ (cos θw − cos θY ) uℓ ≤ 0

for any flow configuration, where

|∇u|2 = (∇u + (∇u)T ) : (∇u + (∇u)T )

us = u · t = the slip velocity (the wall is at rest)

uℓ = the normal velocity of the contact line

This implies that each term has to be non-positive!



The Form of the Boundary Conditions

Relate the “generalized fluxes” (us and uℓ) to the “generalized
forces”:

t · τd · n = f (us)

γ (cos θw − cos θY ) = fℓ(uℓ)

where uf (u) ≤ 0, ufℓ(u) ≤ 0.

f and fℓ have to be obtained from other means.



Computing the Constitutive Relations from MD:

Setup of molecular dynamics:

Interaction: Lennard-Jones

V (r) = 4ε
(

(σ

r

)12
− ξ

(σ

r

)6
)

, ξ = ±1

Solid boundary modeled by FCC lattices

Couette flow geometry

Periodic boundary condition in z and y directions



Typical Profile of the Constitutive Relation fℓ(u)

fℓ(u) computed from MD:
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For simple fluids, the nonlinearity sets in at extremely large
contact line speed (1σ/τ ≈ 158m/s).



Linear Constitutive Relations

Boundary condition for the slip velocity:

t · τd · n = −βus (Navier BC)

Condition for the dynamic contact angle θw :

γ(cos θw − cos θY ) = −β∗uℓ

where β∗ is the three-phase friction coefficient.

dimension of β = η/ls, where the slip length ls is of molecular
scale; β∗ has dimension of viscosity.



Mesoscopic Continuum Model for the MCL

Dynamic equations for the two fluids (i = 1,2):

ρi (∂tu + u · ∇u) = −∇p + ηi∆u

∇ · u = 0

The fluid interface: ẋΓ = u

The interface conditions:

− [p] + n · [τd ] · n = γκ

t · [τd ] · n = 0

At the solid wall:

u · n = 0, t · τd · n = −βius

At the contact line:

γ (cos θw − cos θY ) = −β∗uℓ



Energy Dissipation and Different Spreading Regimes

dE
dt

= −
∑

i=1,2

∫

Ωi

ηi |∇u|2 dx −
∑

i=1,2

∫

Γi

βiu
2
sdσ − β∗u2

ℓ

= Ėb + Ės + Ėℓ

For a spreading drop:

Ės/Ėb ∼ ls/h0 ≪ 1, Ėℓ/Ėb ∼ θaβ
∗/η

θa = the apparent contact angle

When θa < η/β∗: viscous force dominates (hydrodynamic
regime); R(t) ∼ t1/10

When θa > η/β∗: friction dominates; R(t) ∼ t1/7



Different spreading regimes observed in experiments

Petrov et al. Langmuir 1992

Circles: experimental data (PET/glycerol-water/air)
Dashed curve: fitting by the hydrodynamic theory
Dotted curve: fitting by the molecular kinetic theory (friction
regime)

The CL model can describe the different spreading regimes.



Thin Film Model in the Lubrication Approximation

h(x , t): the fluid interface at time t

∂th + ∂x

((

1
3

h3 + λh2
)

∂x

(

∂2
x h + Π(h)

)

)

= 0

h = 0, β∗ȧ =
1
2

(

(∂xh)2 − θ2
Y

)

, at the CL

Π(h) = V ′(h): disjoining pressure



Formation of Precursor Films

Numerical solution of the thin film model with V (h) =
A

(h + h0)2 :
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Layered Spreading

Numerical solution with an oscillatory V (h) (the oscillation is
due to surface treatment e.g. coating):
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Numerical method for the CL model

The interface is tracked using the level set method; the
interface is represented by the zero level set of φ; φ is
advected by the fluid velocity:

∂tφ+ u · ∇φ = 0. (1)

Write the dynamical equations into a unified form:

ρ(φ) (∂tu + (u · ∇)u)) = −∇p + ∇ · τd + F , (2)

∇ · u = 0, (3)

where

τd = η(φ)
(

∇u + (∇u)T
)

,

F = −γκδ(φ)∇φ, κ = ∇ ·

(

∇φ

|∇φ|

)

.



Numerical method for the CL model

The boundary condition along the wall:

−β(φ)us = t · τd · n + τY , (4)

where

τY = γ

(

n ·
∇φ

|∇φ|
− cos θY

)

t · ∇H(φ),

β(φ) = β1(1 − H(φ)) + β2H(φ) + β∗|t · ∇H|.

and H(φ) is the Heaviside function.

Equations (1)-(4) are solved using a semi-implicit scheme and
the finite difference method.



MCL driven by surface tension gradient



Detachment of a Pendant Drop under Gravity

Density ratio ρ1/ρ2 = 3, viscosity ratio η1/η2 = 2.

Dynamics of (insoluble) surfactant: ċ + (∇s · u)c = Ds∇
2
sc

Langmuir equation of state: γ(c) = γ0 + RTc∞ log (1 − c/c∞)



Detachment of a Pendant Drop under Gravity

Density ratio ρ1/ρ2 = 15, viscosity ratio η1/η2 = 2.



MCL on a Chemically Patterned Surface

U

U

θ θar

x

z
I IIII

Two immiscible fluids confined in a channel

Imposed shear speed U

Chemically patterned solid surface

γ cos θY (x) = ∆γ0 + Fε(x)

where Fε(x) is the force due to the periodic pattern.



Instantaneous Flow Fields

Period motion of the fluid interface and the contact lines:



The Dynamics of the Advancing and Receding CLs

At small U, the advancing and receding CLs are pinned in
different regions:
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Red curve: the defect force Fε(x)
Blue curves: the inverse (normal) CL speed.



Contact Angle Hysteresis

Time average of the defect force: 〈Fε〉 =
1
T

∫ T

0
Fε(x)dt
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Effect contact angle: time average of the contact angle
condition γ cos θd − (∆γ0 + Fε(x)) = −β∗ul ⇒

γ cos θeff = ∆γ0 + 〈Fε〉 + β∗U.



Wetting Transition

Superhydrophobic (water repelling) surfaces

Figure: A textured surface
Figure: Micro structure of lotus
leaf



Cassie-Baxter and Wenzel States

Figure: Cassie-Baxter state Figure: Wenzel state



Wetting Transition

Sbragaglia et al. Phys. Rev. Lett. 2007



The Climbing String Method

Evolve a string (a curve parameterized by its normalized
arclength) in the configuration space:

∂tϕ(α, t) = −∇V (ϕ) + λτ̂ , 0 < α < 1

ϕ(0, t) = a, ∂tϕ(1, t) = −∇V + 2(∇V , τ̂)τ̂

At the steady state,

The final point ϕ(1, t) converges
to a saddle point;

The string converges to the
minimum energy path connecting
the minima and the saddle point.

−∇ V

F



The Energy of the System

V (φ) =

∫

Ω

(

1
2
κ|∇φ|2 + f (φ)

)

dx

f (φ) =
1
2
φ2(φ− 1)2,

φ = φs along the wall,
∫

Ω

φdx = Const.



Summary

Derived a mesoscopic sharp-interface model for MCLs
based on “first principle” thermodynamics and molecular
dynamics; extended the contact line model to systems with
surfactants.

Developed a level set method for the CL model.
As an interesting application, we studied moving contact
lines on rough/heterogeneous surfaces.

Studied the contact angle hysteresis using numerical
homogenization.
Studied the wetting transition using the string method.
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