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Gramicidin A Channel

Gramicidin A (gA) Channel
@ gA is a short polypeptide with a helix structure.
@ Upon head to head dimerization, gA forms an channel in lipid bilayers.
@ gA is permeable to cations.

@ In experiments, with the application of a voltage difference across the
lipid bilayer, current and conductance of the channel can be measured.



Asymmetrical conductance change

The current and the conductance of the channel are greatly affected by the
environment near the entrance of the gA pores and not by that near its exit.
Many experiments were designed to control the conductance of gA pore change
asymmetrically by modifying the local charge densities around the channel.

@ phospholipaseD(PLD) + phosphatidylcholine(PC) = negatively charged
phosphatidic acid PA on the membrane

Sheereen Majd et al. J. Am. Chem. Soc., 131 (2009)



Asymmetrical conductance change

@ Attach modified charged groups at the tails of gAs.

Jerrey Yang et al. J. Am. Chem. Soc., 2010, 132 (6)
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Molecular structure of Gramicidin A pore

www.pearsonhighered.com, www.irelandboinc.com, www.psc.edu



Mesh difficults

@ Mesh should keep the topology of the channel.
@ Surface mesh is a manifold. A manifold mesh means that the surface

formed by all the elements of the mesh is also a manifold.

@ Mesh is easy for adaptive meshing strategy.

@ Minxin Chen, Benzhuo Lu, TMSmesh: A robust method for molecular surfac mesh generation using a trace
technique, J. Chem. Theory Comput., 7:203-212, 2011.

@ Minxin Chen, Bin Tub, Benzhuo Lu, Triangulated Manifold Meshing Method Preserving Molecular Surface
Topology, Journal of Molecular Graphics and Modelling, 38: 411-418, 2012



Mesh generated by TMS (Chen&Lu)



Mesh generated by TMS (Chen&Lu)

(C) QS (d) Qm



History

@ Molecular dynamics (MD): D. Marx and J. Hutter (2000)...,

@ Brownian dynamics (BD): S. Li M. Hoyles S. Kuyucak and S. Chung
(1998), Z. B. N. Schuss & R. S. Eissenberg (2001)...,

@ Continuous model: Poisson Boltzmann model (C. L. Rice and R.

Whitehead ), Poinson Nernst Planck model (Eissenberg )
Laplace-Beltrami Poinson Nernst Planck model (W. G. Wei )



Poisson-Nernst-Planck equation

ne =V - (Dn(Vn— K TnV¢) -Jnin Q, (1)
B
=V - (Dp(Vp+ Ks TPV¢)) V-Jp inQs, (2)
—V-(eVg)=(p—n)ze+ > qd(—%) inQ. (3)
) EmEo X €Qnm
(%) = { e zeQ (4)

where Q, is the macro molecular part including the GA and membrane, Q; is
the solvent part; g0 = 8.85 x 107*2C?/(N - m?) is the dielectric constant of
vacuum, e, = 2 is the relative dielectric constant of macromolecule, and

es = 80 is relative dielectric constant of solvent. D,(D,) is the diffution
coefficient which is much smaller in the channell than in the-bulk solution.



Boundary conditions and Initial Value

Jnv=J,-v=0,

n= N, P= Poo;

n(.,0) = noo, p(-,0) = pos,
[eVe] = —pm,

[¢] = 0,[eV¢] =0,

d(x,t) = —0V(xs — L)/2L,

on L Url;
on [3;

on Iy;
on [y;
on 01,



Deal with the Delta function

Dirichlet to Neumann Method (Chern & Liu & Wang 2003)

¢:¢r+¢s+¢h: (6)
where ¢s is the foundemental solution: ¢s = Z #’_Xl' ¢n is the solution
of homonic problem:

Ao =0, in Qs

_ ()

¢h = —¢s, on 895

¢ is the solution of following problem
—V-(epr) = (p— n)ze, in Q
[eVe] - v=—m on I (8)

[eVe] - v=—[emV(ds + m)] - v onTa.
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(f) interface and fixed charge (8) ¢s



Define space X = H'(Q) N H*(Qs) N H*(Qum) equipped with the norm

Ivilx = [Vl + IVlle@) + VI @m)- (9)

Regularity Lemma (Babuskal970, Chen1996)

Assume that p, n € H*(Qs). Then the poisson equation solution ¢, € X and
satisfies a prior estimate

a(d)s + ¢h)

[6-llx < C(llp = i e,y + lom| + || I r2(ry))- (10)




Numerical Method

Finite difference method: M G Kurnikova 1999, W. G. Wei 2011,....
Spectral element method: D. Chen 2001,...

Finite element method: B. Z. Lu 2010,...

Finite volume method: S. R. Mathur 20009,...




FEM Algorithm

@ step 1: Solve the homonic equation get ¢, by mixed element;
@ step 2: Compute the value of [V(¢s + ¢4)] - v on the interface I'; U .

@ step 3: Use finite element method to compute the ¢, n, p by using the
interface boundary condition got in step 2.



FEM Algorithm 2

1
For the triangulation of domain 7, = {77};/’:”1 =QfuQl nandpis
approximated by the piecewise linear element is used with the triangulation of
domain QP ¢, is approximated by piecewise quadratic elements.

@ If K1, Kz € Th and Ky # K3, then either Ki N Ko =0, or K1 N K, is a
common vertex, edge or face of both tetrahedrons.

@ For simply, here we assume that the real domain Qs = !, i.e. we take
the interface I UT, = Q"N Qh.




Semi-discrete form

find na(-, t), pu(-,t) € (N @S&Q(Qs)) N Vr;, and
(- t) € (—0V(xs — L)/(2L) D S2o(Q)) N V for each t > 0, such that

Dpe
<aph n)q, +(DpVpn+ s TphV¢,,Vvh>Q 0, (11)
<aa"th Vh)q, + (DnVh — D"Tnhw,, Vg, =0, (12)
<EV¢7, Vuh>Q — < [EVQS,] - v, u”>r1ur2 — <(p;7 — nn)e, uh>95 =0, (13)

for V vy € Sg,r3(Qs) and V up € Szh,o(Q), where

5€,r3(QS) ={y e C(Qs);1/)|7-/ S P1;7/’|3l'3 =0} and

$20(Q) = {¥ € C(Qs); Y| € Paiithlaa = 0}. (-, -)g and (-, -) denote the L,
inner product over the domain Q and interface I', respectively.



Semi-discrete form

Convergence Theorem

Let ¢,, p, n are the solutions of problem (1), (2), (8) and ¢, ps, ny are the
solutions of semi-discrete problem (11)-(13). If

Br(-, ) € X N WE2(Q) N WH(Qm), p(-, t), n(-t) € H*(Qs) N L2(s), Th
is quasiuniform, then

llor — ¢f”H1(Q) +lp = pulliz,) + 17 = nall2g,) < Ch’, for0<t<T
V(P — pe)ll 2@, + IV(n — nn)|l 2,y < Ch,  for0<t<T.




yu—V - (a(X)Vu+ B(X)u) = f, (14)

@ when a < 3, above problem is a convection dominated one.

@ In order to keep the discrete maximum principle, the Edge Average Finite
Element Method (EAFEM)(Xu & Zikatanov) is used.

@ J.C. Xu and L. Zikatanov, A monotone finite element scheme for convection- diffusion equations,
Mathematics of Computation, 68, (1999), 1429 - 1446.



Algorithm

@ step 1: Let m=1, and p;” = pK, n,f’" =nf, o) = oF.
@ step 2: solve the following equations for nﬁm“, p,k,"’“, with given n,f’", ph
and ¢} using EAFEM.

m+l K
<Ph o~ Ph ,v> o <D vpkm+1 ;l()‘er :m+1v¢ VVh>QS - o,
Km+1 k
n —n." - Dne &,
<% Vh>Qs +<Dnvn: +1 K = z HV(ﬁ vvh>Qs - 0.

@ step 3: Let /™" = ¢pi™! + (1 — ¢)pfm, ™ = enf™t + (1 — c)nfm,

0 < ¢ <1 and solve Poisson equation

<EV¢:’"+17 Vuh>n - < [5V¢km+l]’ Uh>r1u|—2 - <(p:m+1 - n:’"+1)e, uh>Q =0

and then update ¢*m+1 = cgfmit 4 (1 — c)¢*m;

@ step 4: if n: ph’"+1 N km1 are closed to nh , ph , ¢>Z’", then update

p .
nftt = ’"“, p,’f“ = ph’"“, K1 = ;™1 and stop. Otherwise let

m = m+ 1 and go to step 2.
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oV =100mv, n,, = 0.5M(Kcl) results: 2D Cut

(h) postive charge. (i) negative charge

(j) potential (k) netcharge



oV =100mv, n,, = 0.5M(Kcl) results: 1D central line
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Different potential drop

—omv

(n) positive charge (o) negative charge



Different charge density in the
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@ |-V statisfies linear relationship;

@ For the same potential drop, the higer bulk solvent density is, the larger
conductance is, which is obtained by dividing the current by the voltage

difference dV added upon the boundaries of the computational domain:

dl
dv -



Negative charged membrane: conductance

bulk solvent 30mM CsCl

©
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Negative charged membrane: conductance

6 bulk solvent 10mM CsClI 0 bulk solvent 30mM CsCl
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Negative charged membrane: IV curve

bulk solvent 10mM Cscl

current (pA)

0 50 100 150 200
potential drop (mV)



Negative charged membrane:2D cut

5V =100mv, p = 1.4312 x 10 2e/A%, noe = 10mM:

(t) positive charge

(u) negative charge



Negative charged membrane:2D cut

5V =100mv, p = 1.4312 x 10 2e/A%, noe = 10mM:

(v) potential

(w) net charge



Negative charged membrane:1D central line

5V =100mv, p = 1.4312 x 10 2e/A%, noe = 10mM:

charge density (M)
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Negative charged membrane:1D central line

5V =100mv, p = 1.4312 x 1072/ A?

potential (mV)
potential (mV)
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Conductance of different ion

8V = 100mv, diffusion constant: Cs* :2.17 x 107°m?/s,
Ca*™ :7.93 x 107m?/s

bulk solvent 10mM Cacl,

bulk solvent 10mM CsCl 8
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Conductance of different ion

8V = 100mv, diffusion constant: Cs* :2.17 x 107°m?/s,
Ca*™ :7.93 x 107m?/s

conductence (pS)

bulk solvent 10mM Cscl and 10 mM Cacl

7 —a—right
6
5
4

3
0 0 20 0 40 <80
egative chorge densizg on the lﬁaycrxn.nolm12c/(A )



§V = 100mv, diffusion constant: Cs' :2.17 x 10_9m2/s,

Ca®t :7.93 x 107°m?/s

upleft: potential; upright: ¢/~; bottom left: Cs™; bottom right: Ca®*



5V = 100mv, diffusion constant: Cs*

Ca®t :7.93 x 107°m?/s
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Conclution

@ PNP system is used to model the ion transport in the GA pore;

@ By solving PNP, asymmetrical Conductance Changes in GA pore is well
simulated;

@ The corresponding numercial analysis for the algrithm is proposed.

@ Finite size effect: K, Cs*

@ Adaptive method and parallel
@ Fluid effect

@ Different kind of channels




Thank you for your attention!
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