Ions in Channels Natural Nanovalves

Workshop <u>Mathematical Models of Electrolytes</u> in Molecular Biology

National Taiwan University organized by Prof. Tai Chia Lin, Chun Liu

Stochastic Derivation of PNP done previously in some detail, starting with Langevin Stochastic Differential Equation using theory of Stochastic Processes, all the way to Law of Mass Action analytically, with evaluation of all integrals etc

Today, Experimental Evidence for all spheres model

This is the best available test of different mathematical models, in my opinion

Ion Channels are the Valves of Cells

Ion Channels are the Main Controllers of Biological Function

Selectivity

Different lons carry Different Signals

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative (acid) <u>Blue</u> is positive (basic)

Figure of ompF porin by Raimund Dutzler

*Pure H₂O is toxic to cells & proteins

Hard Spheres

ЗÅ

3

A few atoms make a BIG Difference

Glycine replaced by Aspartate

> Structure determined by Raimund Dutzler in Tilman Schirmer's lab Current Voltage relation by John Tang in Bob Eisenberg's Lab

General Theme

Mathematics of Molecular Biology

is (mostly)

Reverse Engineering

i.e., solving specific Inverse Problems

How does it work? How do a few atoms control (macroscopic) Biological Function

Ion Channels are Biological Devices*

Natural nano-valves** for atomic control of biological function

Ion channels coordinate contraction of cardiac muscle, allowing the heart to function as a pump

Coordinate contraction in skeletal muscle

Control all electrical activity in cells

Produce signals of the nervous system

Are involved in secretion and absorption in all cells: kidney, intestine, liver, adrenal glands, etc.

Are involved in thousands of diseases and many drugs act on channels

Are proteins whose genes (blueprints) can be manipulated by molecular genetics

Have structures shown by x-ray crystallography in favorable cases

Can be described by mathematics in some cases

*nearly <u>pico</u>-valves: diameter is 400 – 900 x 10⁻¹² meter; diameter of atom is ~200 x 10⁻¹² meter

6

~30 x 10⁻⁹ meter

*Device is a Specific Word, that exploits specific mathematics & science

Current in One Channel Molecule is a Random Telegraph Signal

Channels are Selective Molecular Devices

Different Ions Carry Different Signals through Different Channels

Ionic solutions are NOT ideal Classical Biochemistry assumes ideal solutions. K⁺ & Na⁺ are identical only in Ideal Solutions. ompF porin

Figure of ompF porin by Raimund Dutzler

Engineering of Channels by evolution makes them Selective Devices

Different Types of Channels use Different Types of Ions for Different Information

All of life depends on the differences between salts of potassium K⁺ and sodium Na⁺. If cells cannot distinguish K⁺ from Na⁺, they swell, burst and die.

Note: <u>intra</u>-cellular compartments are defined by <u>their</u> membranes

Patch clamp and Bilayer apparatus clamp ion concentrations in the baths and the voltage across membranes.

Patch Clamp Setup

Recordings from One Molecule

SINGLE isolated RyR Channels

in Artificial Planar Lipid Bilayers

Thousands of Molecular Biologists Study Channels as Devices every day, One protein molecule at a time

This number is not an exaggeration. We have sold >10,000 AxoPatch amplifiers

AxoPatch 200B

Designed at Rush Current Noise

lon_channel<u>newsletter</u>

Ion Channel Monthly

If you have been forwarded this newsletter and would like to subscribe for yourself, please <u>click here</u>.

View this email in your browser (or link to it) Share this message with colleagues

Popular publications for March (view most recent)

- 1. Molecular basis of infrared detection by snakes. Nature
- <u>The Angelman Syndrome Protein Ube3A Regulates</u> <u>Synapse Development by Ubiquitinating Arc. Cell</u>
- 3. AMPA receptors--another twist? Science
- 4. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAL Annu Rev Immunol
- 5. Neurological Channelopathies. Annu Rev Neurosci
- 6. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet
- A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na(+) Channels during the Formation of Nodes of Ranvier, Neuron
- 8. Small Molecule Activators of TRPML3. Chem Biol
- <u>Truncated {beta}-amyloid peptide channels provide an</u> alternative mechanism for Alzheimer's Disease and <u>Down syndrome</u>, Proc Natl Acad Sci U S A
- Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci

Targeted Life Science Advertising

Ion Channel

Media Group

Sponsors:

- <u>Bsys</u> Swiss Quality in Ion Channel Services
- <u>Automate Scientific</u> -Electrophysiology Equipment
- <u>Cellectricon</u> Dynaflow: a quantum leap for electrophysiology
- <u>Nanion</u> Automated patch clamp
- <u>Millipore</u> Ion channel cell lines

Sponsorship slots are currently open. Visit our <u>corporate webpage</u> to learn about the most highly targeted life science advertising available.

Why not forward this to your colleagues? They'll thank you for ttl

Channel Structure Does Not Change once the channel is open

Ca²⁺ Release Channel of Inositol Trisphosphate Receptor: slide and data from Josefina Ramos-Franco. Thanks!

Where to start?

Why not compute all the atoms?

Multi-Scale Issues

Journal of Physical Chemistry C (2010)114:20719

Computational Scale	Biological Scale	<u>Ratio</u>
<u>Time</u> 10 ⁻¹⁵ sec	10 ⁻⁴ sec	10 ¹¹
Length 10 ⁻¹¹ m	10 ⁻⁵ m	10 ⁶
Spatial Resolution	Three Dimensional (10 ⁴) ³	10 ¹²
Volume 10 ⁻³⁰ m ³	$(10^{-4} \text{ m})^3 = 10^{-12} \text{ m}^3$	10 ¹⁸
Solute Concentration including Ca ²⁺ mixtures	10 ⁻¹¹ to 10 ¹ M	10 ¹²

Atomic and Macro Scales are BOTH used by channels because they are nanovalves so atomic and macro scales must be <u>Computed and CALIBRATED Together</u>

This may be impossible in all-atom simulations

Multi-Scale Issues are Always Present in Atomic Scale Engineering

Atomic & Macro Scales are both used by channels just because Channels are Nanovalves

By definition: all valves use small structures to control large flows

All Life Occurs in Ionic Mixtures

in which [Ca²⁺] is important* as a control signal

Simulations must deal with Multiple Components

as well as Multiple Scales

This may be nearly impossible for ionic mixtures because 'everything' interacts with 'everything else' on both atomic and macroscopic scales particularly when mixtures flow

*[Ca²⁺] ranges from 1× 10⁻⁸ M inside cells to 10 M inside channels

Uncalibrated Simulations will make devices that do not work

Details matter in devices

Where to start?

Mathematically ?

Physically?

Reduced Models are Needed

Reduced Models are Device Equations

like Input Output Relations of Engineering Systems

The device equation is the mathematical statement of how the system works Device Equations describe 'Slow Variables' found in some complicated systems

How find a Reduced Model?

Biology is Easier than Physics

Reduced Models Exist*

for important biological functions or the Animal would not survive to reproduce

*Evolution provides the existence theorems and uniqueness conditions so hard to find in theory of inverse problems.

(Some biological systems – the human shoulder – are not robust, probably because they are incompletely evolved,
i.e they are in a local minimum 'in fitness landscape'.
I do not know how to analyze these.
I can only describe them in the classical biological tradition.)

Multi-scale Engineering is MUCH easier when robust

Reduced Models Exist

Reduced models exist because they are the adaptation created by evolution to perform a biological function like selectivity

Reduced Models

and its parameters are found by Inverse Methods

of Reverse Engineering

Bioengineers: this is reverse engineering

Inverse Problems

Given the Output Determine the Reduced Model

For example,

Find Charge Distribution in Channel from Current Voltage Relations

Problem (with noise and systematic error) has actually been solved byTikhonov Regularization Burger, Eisenberg, Engl (2007) SIAM J Applied Math 67: 960-989

using procedures developed by Engl to study Blast Furnaces and their Explosions

Inverse Problems Find the Model, given the Output

Many answers are possible: 'ill posed' * Central Issue

Which answer is right?

*Ill posed problems with too little data seem complex, even if they are not. Some of biology seems complex for that reason. The question is which 'some'? How does the Channel control Selectivity?

Inverse Problems: many answers possible

Central Issue Which answer is right?

Key is ALWAYS Large Amount of Data from Many Different Conditions

Almost too much data was available for reduced model: Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67:960-989

Inverse Problems: many answers possible Which answer is right?

Key is **Large Amount of Data** from **Many Different Conditions** Otherwise problem is 'ill-posed' and has no answer or even set of answers

Molecular Dynamics usually yields ONE data point at one concentration

MD is not yet well calibrated

(i.e., for activity = free energy per mole) for Ca²⁺ or ionic mixtures like seawater or biological solutions Working Hypothesis:

Crucial Biological Adaptation is Crowded lons and Side Chains

Wise to use the Biological Adaptation to make the reduced model!

Reduced Models allow much easier Atomic Scale Engineering

Physical basis of function

Active Sites of Proteins are <u>Very Charged</u> 7 charges $\sim 20M$ net charge = 1.2×10^{22} cm⁻³

Crowded Active Sites

in 573 Enzymes

Enzyme Type		Catalytic Active Site Density (Molar)		Protein	
		Acid (positive)	Basic (negative)	Total	Elsewhere
	Total (n = 573)	10.6	8.3	18.9	2.8
EC1	Oxidoreductases (n = 98)	7.5	4.6	12.1	2.8
EC2	Transferases (n = 126)	9.5	7.2	16.6	3.1
EC3	Hydrolases (n = 214)	12.1	10.7	22.8	2.7
EC4	Lyases (n = 72)	11.2	7.3	18.5	2.8
EC5	Isomerases (n = 43)	12.6	9.5	22.1	2.9
EC6	Ligases (n = 20)	9.7	8.3	18.0	3.0

Jimenez-Morales, Liang, Eisenberg

EC2: TRANSFERASES

Average Ionizable Density: 19.8 Molar

Example **UDP-N-ACETYLGLUCOSAMINE** ENOLPYRUVYL TRANSFERASE (PDB:1UAE)

Functional Pocket Volume: 1462.40 Å³ Density : 19.3 Molar (11.3 M+. 8 M-)

Crowded

Functional pocket residues Green: **Basic = Probably Positive = R+K+H** Blue: Acid = Probably Negative = E + Q Red: Uridine-Diphosphate-N-acetylclucosamine Brown

Jimenez-Morales, Liang, Eisenberg

Everything Interacts with Everything Else

by steric exclusion inside crowded active sites

Everything interacts with macroscopic Boundary Conditions (and much else) through long range electric field

'Law' of mass action needs to be generalized

Three Channel Types

RyR, Ca_V = EEEE, and Na_v = DEKA

analyzed <u>successfully</u>*

in a wide range of solutions by the

'All Spheres' Primitive Model

Implicit solvent model of open channel

ions and protein side chains are hard spheres in this model

* Many methods have been used in more than 30 papers since Nonner and Eisenberg, 1998
Best Evidence is from the

RyR Receptor

Dirk Gillespie

Dirk_Gillespie@rush.edu

Gerhard Meissner, Le Xu, et al, not Bob Eisenberg

- More than 120 combinations of solutions & mutants
- 7 mutants with significant effects fit successfully

1. Gillespie, D., Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. *Biophys J, 2008.* 94(4): p. 1169-1184.

2. Gillespie, D. and D. Boda, Anomalous Mole Fraction Effect in Calcium Channels: A Measure of Preferential Selectivity. *Biophys. J., 2008.* 95(6): p. 2658-2672.

3. Gillespie, D. and M. Fill, Intracellular Calcium Release Channels Mediate Their Own Countercurrent: Ryanodine Receptor. *Biophys. J., 2008. 95(8): p. 3706-3714.*

4. Gillespie, D., W. Nonner, and R.S. Eisenberg, Coupling Poisson-Nernst-Planck and Density Functional Theory to Calculate Ion Flux. *Journal of Physics (Condensed Matter), 2002. 14: p. 12129-12145.*

5. Gillespie, D., W. Nonner, and R.S. Eisenberg, Density functional theory of charged, hardsphere fluids. Physical Review E, 2003. 68: p. 0313503.

6. Gillespie, D., Valisko, and Boda, Density functional theory of electrical double layer: the RFD functional. *Journal of Physics: Condensed Matter, 2005.* 17: p. 6609-6626.

7. Gillespie, D., J. Giri, and M. Fill, Reinterpreting the Anomalous Mole Fraction Effect. The ryanodine receptor case study. Biophysical Journal, 2009. 97: p. pp. 2212 - 2221

8. Gillespie, D., L. Xu, Y. Wang, and G. Meissner, (De)constructing the Ryanodine Receptor: modeling ion permeation and selectivity of the calcium release channel. *Journal of Physical Chemistry*, 2005. 109: p. 15598-15610.

9. Gillespie, D., D. Boda, Y. He, P. Apel, and Z.S. Siwy, Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. *Biophys. J.,* 2008. 95(2): p. 609-619.

10. Malasics, A., D. Boda, M. Valisko, D. Henderson, and D. Gillespie, Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter. *Biochim Biophys Acta, 2010. 1798(11): p. 2013-2021.*

11. Roth, R. and D. Gillespie, Physics of Size Selectivity. *Physical Review Letters, 2005. 95: p.* 247801.

12. Valisko, M., D. Boda, and D. Gillespie, Selective Adsorption of Ions with Different Diameter and Valence at Highly Charged Interfaces. *Journal of Physical Chemistry C, 2007. 111: p. 15575-15585.*

13. Wang, Y., L. Xu, D. Pasek, D. Gillespie, and G. Meissner, Probing the Role of Negatively Charged Amino Acid Residues in Ion Permeation of Skeletal Muscle Ryanodine Receptor. *Biophysical Journal, 2005.* 89: p. 256-265.

14. Xu, L., Y. Wang, D. Gillespie, and G. Meissner, Two Rings of Negative Charges in the Cytosolic Vestibule of T Ryanodine Receptor Modulate Ion Fluxes. *Biophysical Journal, 2006. 90: p. 443-453.*

Solved bY DFT-PNP (Poisson Nernst Planck)

DFT-PNP gives location of lons and 'Side Chains' as OUTPUT

Other methods

give nearly identical results

DFT (Density Functional Theory of fluids, not electrons) MMC (Metropolis Monte Carlo)) SPM (Primitive Solvent Model) EnVarA (Energy Variational Approach) Non-equil MMC (Boda, Gillespie) several forms Steric PNP (simplified EnVarA) Poisson Fermi

The model <u>predicted</u> an AMFE for Na⁺/Cs⁺ mixtures <u>before</u> it had been measured

Divalents

Gillespie, Meissner, Le Xu, et al

Theory fits Mutation with Zero Charge

Calcium Channel

The Journal of General Physiology Vol 133 • No 5 • May 2009

/ww.jgp.org

- Nonner, W., D. P. Chen, and B. Eisenberg. 1998. Anomalous Mole Fraction Effect, Electrostatics, and Binding in Ionic Channels. Biophysical Journal 74:2327-2334.
- Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and Selectivity in L-type Ca Channels: a Mean Spherical Approximation. Biophysical Journal 79:1976-1992.
- Nonner, W., D. Gillespie, D. Henderson, and B. Eisenberg. 2001. Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Physical Chemistry B 105:6427-6436.
- Boda, D., W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie. 2008. Volume exclusion in calcium selective channels. Biophys. J.:biophysj.107.122796.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2006. Effect of Protein Dielectric Coefficient on the Ionic Selectivity of a Calcium Channel. Journal of Chemical Physics 125:034901.
- Boda, D., T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. 2004. Monte Carlo simulation study of a system with a dielectric boundary: application to calcium channel selectivity. Molecular Simulation 30:89-96.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2007. The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Physical Review Letters 98:168102.

More than 35 papers are available at

ftp://ftp.rush.edu/users/molebio/Bob_Eisenberg/reprints

http://www.phys.rush.edu/RSEisenberg/physioeis.html

Experiments have 'engineered' channels (5 papers) including Two Synthetic Calcium Channels

Atomic Scale

built by Henk Miedema, Wim Meijberg of <u>BioMade Corp</u>. Groningen, Netherlands 45 Miedema et al, Biophys J 87: 3137–3147 (2004); 90:1202-1211 (2006); 91:4392-4400 (2006)

'All Spheres' Model

Nonner & Eisenberg

'Side Chains' are Spheres Free to move inside channel

Crowded lons

Ion Diameters 'Pauling' Diameters			
Ca++	1.98 Å		
Na+	2.00 Å		
K+	2.66 Å		
'Side Chain' Diameter			
Lysine K	3.00 Å		
D or E	2.80 Å		
Channel Diameter 6 Å			

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Experiments and Calculations done at pH 8 47

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Ion 'Binding' in Crowded Channel

Classical Donnan Equilibrium of Ion Exchanger

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

<u>Metropolis</u> <u>Monte</u> <u>Carlo</u> Simulates Location of lons

both the mean and the variance

MMC details

- 1) Start with Configuration A, with computed energy E_A
- 2) Move an ion to location B, with computed energy E_B
- 3) If spheres <u>overlap</u>, $E_B \rightarrow \infty$ and configuration is <u>rejected</u>
- 4) If spheres do <u>not</u> overlap, $E_B \neq 0$ and configuration may be <u>accepted</u>

(4.1) If $E_B < E_A$: accept new configuration.

(4.2) If $E_B > E_A$: accept new configuration with probability $\exp\left[-(E_A - E_B)/k_BT\right]$

Key idea

Instead of choosing configurations from uniform distribution, then weighting them with $\exp(-E/k_BT)$, **MMC** chooses them with a Boltzmann probability and weights them evenly.

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

Sodium Channel

Voltage controlled channel responsible for signaling in nerve and coordination of muscle contraction

Challenge

from channologists

Walter Stühmer and Stefan Heinemann

Göttingen Leipzig Max Planck Institutes

Can THEORY explain the MUTATION Calcium Channel into Sodium Channel?

Calcium Channel Sodium Channel

Nothing was Changed from the EEEA Ca channel except the amino acids

Calculated DEKA Na Channel Selects Ca²⁺ vs. Na⁺ and also K⁺ vs. Na⁺

Usually Complex Unsatisfying Answers*

How does a Channel Select Na⁺ vs. K⁺?

* Gillespie, D., Energetics of divalent selectivity in the ryanodine receptor. Biophys J (2008). 94: p. 1169-1184
* Boda, et al, Analyzing free-energy by Widom's particle insertion method. J Chem Phys (2011) 134: p. 055102-14

Simple Independent[§] Control Variables* DEKA Na⁺ channel

Amazingly simple, not complex for the most important selectivity property of DEKA Na⁺ channels

*Control variable = position of gas pedal or dimmer on light switch § Gas pedal and brake pedal are (hopefully) independent control variables

Structure (diameter) controls **Selectivity Solvation** (dielectric) controls **Contents**

*Control variables emerge as <u>outputs</u> Control variables are <u>**not**</u> inputs

Structure (diameter) controls Selectivity

Solvation (dielectric) controls Contents

Control Variables emerge as <u>outputs</u> Control Variables are <u>not</u> inputs

Monte Carlo calculations of the DEKA Na channel

Na+ vs K+ (size) Selectivity (ratio) Depends on Channel Size,

not dehydration (not on Protein Dielectric Coefficient)*

^{*}in DEKA Na channel

Generalization of 'Law' of Mass Action is needed because the 'law' assumes **NO FLOW** and **NO INTERACTIONS**

Law of Mass Action

$$A \square \overset{k_f}{\square} \overset{m}{\square} B$$

$$-\frac{d}{dt}[A] = k_f[A]; \qquad -\frac{d}{dt}[B] = k_b[B]$$
$$K_{eq} = \frac{[B]}{[A]} = \frac{k_f}{k_b}$$

$$J_{A \to B} = k_f [A]; \quad J_{B \to A} = k_b [B]$$

[A] means the concentration of species A, i.e., the number density of A

In the minds of most biochemists, many chemists, and textbook authors

A, *B* are assumed to be ideal solutions of noninteracting particles k_{β} k_{b} are assumed to be constants independent of concentration of any species

Everything interacts with Everything Else in biology and flows cease only at death

Everything is hidden

in K_{eq} , k_f and k_b

Interactions are significant in biological solutions (Ringer) Interactions are large in and near channels

*k*_{*f,b} and K*_{*eq*} are functions of 'everything' They are not constants</sub> olume 511, issues 1-3, 26 July 2011

CHEMICAL

PHYSICS

LETTERS

Frontier research in molecular sciences,

materials and biological systems

Unidirectional Efflux

Diffusion

 $J_k = C_k (L)$ Source

Concentration

ISSN 0009-2614

Great Opportunity for New Science

Chemical Reactions in Complex Fluids

Variational Approach EnVarA

Dissipative

Editors: DAVID CLARY MITCHIO OKUMURA VILLY SUNDSTRÖM

Frontiers Editor: RICHARD SAYKALLY

Prob{RL

Conditional Probability Unidirectional Infflux

 $Prob\{L|R\}$

 $C_{i}(R)$

Derived from theory of Stochastic Processes

from Bob Eisenberg p. 1-6, in this issue

'Law' of Mass Action

including

Energetic Variational Approach allows

accurate computation of

Flow and Interactions

in Complex Fluids like Liquid Crystals

Classical theories and Molecular Dynamics have difficulties with flow, interactions, and complex fluids

Engineering needs Calibrated Theories and Simulations Engineering Devices almost always use flow

Energetic Variational Approach EnVarA

Chun Liu, Rolf Ryham, Yunkyong Hyon, and Bob Eisenberg

Mathematicians and Modelers: two <u>different</u> 'partial' variations written in <u>one framework</u>, using a 'pullback' of the action integral

Energetic Variational Approach

EnVarA across biological scales: molecules, cells, tissues Variational theory of complex fluids developed by Chun Liu with

(1) Hyon, Eisenberg	lons in \longrightarrow	<u>Channels</u>	
(2) Horng, Lin, Liu, Eisenberg	lons in \longrightarrow	<u>Channels</u>	
(3) Bezanilla, Hyon, Eisenberg	Conformation Change of	Voltage Sensor	Ocales
(4) Ryham, Cohen	Membrane flow	► <u>Cells</u>	
(5) Mori, Eisenberg	Water flow in \longrightarrow	<u>Tissues</u> ∠	

creates a new

Multiscale Field Theory of Interacting Components

needed for Molecular Engineering in general that allows boundary conditions and flow and deals with lons in solutions self-consistently

Take Home Lessons

Take Home Lesson 1

Ionic Solutions

Complex Fluids

and cannot be well analyzed by the theory of simple fluids

Take Home Lesson 2

Energetic Variational Approach allows

accurate computation of

Flow and Interactions

in Complex Fluids like Liquid Crystals

Engineering needs Calibrated Theories and Simulations

Engineering Devices almost always use flow
Classical theories and **Molecular Dynamics** have difficulties with Flow, Interactions, and Complex Fluids

Engineering needs Calibrated Theories and Simulations Engineering Devices almost always use flow **Take Home Lesson 3**

Structure is the Computed Consequence of Forces

in these models

Selectivity Depends on Structure

What does the protein do?

Channel and Contents form a **Self-Organized Structure** with Side Chains at position of **Minimum Free Energy Protein Fits the Substrate** 'Induced Fit Model of Selectivity' Binding Sites* are **outputs** of our Calculations

This is the Self-organized Induced fit model of Koshland and the founders of enzymology,

Made specific by Mathematics and Computation

We can actually compute the Structures that determine Selectivity

Can EnVarA actually compute the function of these systems?

Can *EnVarA* serve as a useful Mathematical Framework for Multi-scale Engineering?

The End

Any Questions?

Solved with Metropolis Monte Carlo

MMC Simulates Location of Ions

both the mean and the variance

Produces Equilibrium Distribution of location of lons and 'Side Chains'

MMC yields **Boltzmann Distribution** with correct Energy, Entropy and Free Energy

Other methods

give nearly identical results

DFT (Density Functional Theory of fluids, not electrons) DFT-PNP (Poisson Nernst Planck) MSA (Mean Spherical Approximation) SPM (Primitive Solvent Model) EnVarA (Energy Variational Approach) Non-equil MMC (Boda, Gillespie) several forms Steric PNP (simplified EnVarA) Poisson Fermi

Crowded Channels, Crowded Active Sites

are

Complex Fluids

like liquid crystals of LCD displays

All atom simulations of complex fluid are particularly challenging because 'Everything' interacts with 'everything' else on atomic & macroscopic scales

Generalization of "Law of Mass Action" **IS Feasible for Ionic Solutions**

using the Implicit Solvent Model of ionic solutions*

*and perhaps the solvent primitive model or more sophisticated models and simulations that professional physical chemists know better than I

Energetic Variational Approach allows

accurate computation of

Flow and Interactions

in Complex Fluids like Liquid Crystals

Classical theories and Molecular Dynamics have difficulties with flow, interactions, and complex fluids

Engineering needs Calibrated Theories and Simulations Engineering Devices almost always use flow