Adjoint Based hp-Adaptations for the CPR method

L. Shi and Z.J. Wang (zjwang.com) Department of Aerospace Engineering University of Kansas

Outline

Introduction and motivation

High-order CPR method

Adjoint-based error estimate and hp-adaptation

- Naive formulation
- Dual-consistent formulation

Numerical results

Conclusions

Where is KU?

The KUAE Legacy

First graduates in 1944

- KUAE is among of top universities in the world in AIAA student design competitions
 - No. 1 in AIAA Graduate Team Aircraft Design Competition
 - Swept top 3 in the AIAA Individual Aircraft Design Competition
 - No. 2 in AIAA's team engine design competition
 - No. 2 in AIAA Undergraduate Team Space Transport Design
- Faculty with industry/lab experience
- Lots of faculty contact
- Focus on design/build/fly and hands on experience
 Very strong graduates

The Most Famous Alumni

Joe Engle Astronaut

KUAE BS 1948

John Brizendine CEO of Douglas Aircraft

KUAE BS 1948

Alan Mulally CEO of Ford

KUAE BS 1969

Who Are We -- By the Numbers?

- >Undergraduate Students: ~170
- Graduate Students: ~40 with 50:50 split between MS and PhD
- Research Volume: ~\$1.5 2.0M (FY09-FY12)
 - Top 10 unit on campus for faculty and student engagement in research, per capita expenditures
 - Several faculty are key leaders and active in CReSIS (Center for Remote Sensing of Ice Sheets), the largest research center at KU, which designs, builds and flies the Meridian UAS.
 - Strengths:
 - oUnmanned Aerial Vehicles
 - Composites and adaptive structures
 - Computational fluid dynamics

Our People

- >11 tenured/tenure-track faculty members
 - Most serve on national committees in aerospace engineering
 - Many serve as editors of professional journals
 - Many have lab/industry experience
- All faculty supported by external research grants
 - Many are national leaders in structures, aerodynamics, control/robotics and propulsion
- ✓4 Staff
 - 2 administrative assistants
 - 2 technicians
- 2 adjunct faculty
 - One is an astronaut

Popular High-Order Methods

Compact difference method >Optimized difference method >ENO/WENO methods >MUSCL, PPM and K-exact FV Spectral element/hp finite element Residual distribution methods >Discontinuous Galerkin Spectral volume/spectral difference Correction procedure via reconstruction

Unstructured grid

Structured vs. Unstructured Grid Methods

>Efficiency (S.)
>Ease of implementation (S.)
>Geometric flexibility (U.)
>Boundary condition (U.)
>Load balancing (U.)
>K-exactness on arbitrary grids (U.)

Demonstration of CPR Methods

Introduction

► According to the 1st and 2nd International Workshops

- High-order methods outperform low order ones for smooth problems with smooth geometries
- For non-smooth problems, no conclusion can be drawn
- Solution-based hp-adaptations dramatically increase the efficiency, accuracy and robustness

Pacing items

 High-order mesh generation, robust and efficient solver, error estimate and hp-adaptations, and discontinuity capturing

>Objective: develop an adjoint method for the CPR method to obtain engineering outputs of desired accuracy with minimal cost

Solution Adaptive Approaches

Discretization error reduction

- P-enrichment: smooth flow regions (Weierstrass theorem)
- H-refinement: geometry or flow singularities
- Anisotropic adaptation: shear layers, shocks,...

12

Solution Adaptive Approaches

Adaptation criteria/error indicators

- Feature-based: simple, ad hoc, less rigorous
- Residual-based: may lead to false refinements
- Adjoint-based: adapt the mesh in regions affecting the output, and estimate the error in the output

Main Idea of CPR (Huynh)

We solve

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$$

using a differential formulation

$$\frac{\partial U_i(x)}{\partial t} + \frac{\partial F_i(x)}{\partial x} = 0, \quad U_i(x) \in P^k, \quad F_i(x) \in P^{k+1}$$

The DOFs are solutions at a set of "solution points"

Main Idea of CPR (FR)

Find a flux polynomial $F_i(x)$ one degree higher than the solution, which minimizes

$$\left\|\tilde{F}_i(x) - F_i(x)\right\|$$

The use the following to update the DOFs

The 2D CPR Method on Simplex

Consider a hyperbolic conservation law in 2D

$$\frac{\partial Q}{\partial t} + \nabla \cdot \vec{f}(Q) = 0$$

>The 2D CPR formulation for a linear triangle is

$$\frac{\partial Q_{i,j}}{\partial t} + \nabla \cdot \vec{f}(Q_{i,j}) + \frac{1}{|V_i|} \sum_{f \in \partial V_i} \sum_{l} \alpha_{j,f,l} [\mathbf{F}^n]_{\mathbf{f},\mathbf{l}} S_f = 0$$

The correction coefficient $\alpha_{j,f,l}$

• Constants for any linear triangle

•
$$\int_{V_i} W \delta_i dV = \int_{\partial V_i} W[\mathbf{F}^n] dV$$

16

Review of Adjoint-Based Adaptive Methods

Adjoint-based adaptive methods

Dynamically distribute computer resources to regions which are important for predicting engineering outputs

Current status of the output-based adaptation methods

- 2D/3D complex geometry
- Steady/unsteady
- Euler/NS/RANS
- Anisotropic hp-adaptations

[Giles and Pierce,1997; Becker and Rannacher,2001; Venditti and Darmofal, 2002; Hartmann and ouston,2002; Nielsen et al, 2004; Fidkowski and Darmofal,2007; Hartmann,2007; Mani and Mavriplis, 2007; Nemec et al, 2008; Park, 2008; Wang and Mavriplis,2009; Oliver and Darmofal, 2008; Fdikoswski and Roe, 2009; Ceze and Fdikoswski,2012;...]

18

Fully Discrete Adjoint

Let $R_h(Q_h)$ be the residual, $J_h(Q_h)$ be the output. The adjoint $\tilde{\psi}_h$ is defined in

 $\delta J_h = J_h(\mathbf{Q}_h + \delta \mathbf{Q}_h) - J_h(\mathbf{Q}_h) = \tilde{\psi}_h^T \delta R_h$

Since

$$\frac{\partial R_h}{\partial Q_h} \delta Q_h + \delta R_h = 0$$

Then

$$\delta J_{h} = \frac{\partial J_{h}}{\partial Q_{h}} \delta Q_{h} = \tilde{\psi}_{h}^{T} \delta R_{h} = -\tilde{\psi}_{h}^{T} \frac{\partial R_{h}}{\partial Q_{h}} \delta Q$$

Finally

$$-\frac{\partial J_{h}}{\partial Q_{h}} = \tilde{\psi}_{h}^{T} \frac{\partial R_{h}}{\partial Q_{h}} \quad \text{or} \quad -\frac{\partial R_{h}}{\partial Q_{h}}^{T} \tilde{\psi}_{h} = \frac{\partial J_{h}}{\partial Q_{h}}^{T}$$

The Fully Discrete Adjoint for the CPR Method

NACA 0012 at $M_{\infty} = 0.4$, $\alpha = 5^{\circ}$

- The x-mom of the lift adjoint
- Fully discrete adjoint
- Highly-oscillating adjoint solution

$$-\frac{\partial R_h}{\partial Q_h}^T \tilde{\psi}_h = \frac{\partial J_h}{\partial Q_h}^T$$

Dual Consistency

A residual from a differential schemes at SP j of cell i $R(Q)_{i,j} = \nabla \cdot \vec{f}(Q_i)_j + \frac{1}{|V_i|} \sum_{f \in \partial V_i} \sum_{l} \alpha_{j,f,l} [F^n]_{f,l} S_f$

With fully discrete approach

$$-\sum_{i}\sum_{j}\frac{\partial R_{i,j}}{\partial Q_{k}}\tilde{\psi}_{i,j} = \frac{\partial J}{\partial Q_{k}}, \quad k = 1, \dots, N_{DOF}$$

To be dual consistent,

$$-\int_{\Omega} \frac{\partial N(Q)}{\partial Q}^{T} \psi dV = \frac{\partial J}{\partial Q}^{T}$$

Discrete Adjoint for the CPR in the Integral Form

$$-\int_{\Omega} \frac{\partial N(Q)}{\partial Q}^{T} \psi dV = \frac{\partial J}{\partial Q}^{T}$$

>Approximate ψ_i using the basis L_j from the primal solution space $\psi_i = \sum L \hat{\psi}$

$$\psi_i = \sum_j L_j \hat{\psi}_{i,j}$$

Directly discretizing the continuous adjoint eqn

$$-\sum_{i}\sum_{j}\frac{\partial R_{i,j}}{\partial Q_{k}}\omega_{j}\left|J_{i,j}\right|\hat{\psi}_{i,j}=\frac{\partial J}{\partial Q_{k}}$$

> The difference between $\hat{\psi}_{i,j}$ and $\tilde{\psi}_{i,j}$

$$\tilde{\psi}_{i,j} = \omega_j \left| J_{i,j} \right| \hat{\psi}_{i,j}$$

Comparison of the Adjoints with the CPR Method

NACA 0012 at $M_{\infty} = 0.4$, $\alpha = 5^{\circ}$

- The x-mom of the lift adjoint
- Fully discrete adjoint
- Discrete adjoint in the integral form

The inconsistent adjoint

Dual consistent adjoint

The Adjoint-based Error Estimation

>Output error est.: adjoint solution weighted primal residual $\delta J_h(Q_h) = J_h(Q_H) - J_h(Q_h) \approx -(\hat{\psi}_h)^T R_h(Q_h^H)$

>Adjoint-based local error indicator $\eta = \left| (\hat{\psi}_h)^T R_h (Q_h^H) \right|$

Multi-p residual-based error indicator

Adjoint-based error indicator

Accuracy Test of the Adjoint-based Error Est.

NACA 0012 at $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$

- The lift as the output J
- The effectivity of the error est.

$$\eta_H^e = \frac{-(\psi_h)^T R_h(Q_h^H)}{J_H(Q_H) - J_h(Q_h)}$$

24

1	Cells	$\mathcal{J}_H(Q_H) - \mathcal{J}_h(Q_h)$	$-(\psi_h)^T \mathcal{R}_h(Q_h^H)$	η_{H}^{e}
	280	-5.859e-3	-1.103e-3	1.88
	1120	-2.638e-3	-4.002e-3	1.52
	4480	-8.736e-4	-9.995e-4	1.14
	17920	-1.933e-4	-1.988e-4	1.03

HP-adaptation Procedure

- Solve the flow field until a convergence criterion is reached
- > Compute the error indicator η_i for each cell
- > Mark cells with the largest error indicator with a fixed fraction f
- > Perform the h-refine on the marked cells with large jumps
- > Apply the p-enrichment on the rest of the marked cells
- > Inject the current solution into the new one
- Repeat step 1-6

Smoothness indicator

$$\phi_{i} = \frac{1}{\left|\partial\Omega_{i}\right|} \int_{\partial\Omega_{i}} \left|\frac{\Box q \Box \cdot \vec{n}}{\{q\}}\right| dS$$

[Krivodonova et al, 2004]

$$\phi_i > \frac{1}{K}$$
 $h-refinements$
 $\phi_i < \frac{1}{K}$ $p-enrichments$

Anisotropic h-Adaptation

26 KU KANSAS

The local output-error sampling procedure for the anisotropic adaptations

The candidate cell

27

Subsonic Flow over a Smooth Bump

 \rightarrow Fixed fraction f = 0.1 >Inviscid flow, $M_{\infty} = 0.5$ > Start from uniform p = 1Residual based adaptations >5 h- and p-adaptation iterations

Subsonic Flow over a Smooth Bump

Mach contours on the initial mesh

Mach contours on the adapted mesh

29 KU KANSAS

Subsonic Flow over a Smooth Bump

H-adapt level 5

P-adapt level 5

- ► Fixed fraction f = 0.1
- >Inviscid, $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$
- Start from uniform p = 1
- >H- and p-adaptation
- >'Truth' CL, CD from 1st HOW

Initial mesh

• Error indicators

- The lift adjoint
- The drag adjoint
- Unweighted residual

Initial solution

5 level h-adaptation

Drag adjoint

Residual-based

5 level p-adaptation

Lift adjoint

Drag adjoint

Residual-based

Iso/aniso H-adaptation
Fixed fraction f = 0.1
Inviscid, $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$ 3rd order scheme

Adaptation strategies

- Hanging nodes
- No-hanging nodes
- Error indicators
 - lift adjoint
 - drag adjoint

Initial solution

Iso/aniso H-adaptation
Fixed fraction f = 0.1
Inviscid, $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$ 3rd order scheme

Initial mesh

Adaptation strategies

- Hanging nodes
- No-hanging nodes
- Error indicators
 - lift adjoint
 - drag adjoint

The adapted solution

Aniso lift adjoint

Iso lift adjoint

Aniso drag adjoint

41 KU KANSAS

NACA 0012, $M_{\infty}=0.5$, $\alpha=1^{\circ}$, Re=5000

- Iso/aniso H-adaptation
 Fixed fraction f = 0.1
- >Inviscid, $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$
- >4th order scheme
- ▶'Truth' CL, CD from 1st HOW

Adaptation strategies

- Hanging nodes
- Error indicators
 - drag adjoint

Initial solution

NACA 0012, $M_{\infty}=0.5$, $\alpha=1^{\circ}$, Re=5000

- Iso/aniso H-adaptation
 Fixed fraction f = 0.1
- >Inviscid, $M_{\infty} = 0.5$, $\alpha = 2^{\circ}$
- >4th order scheme
- >'Truth' CL, CD from 1st HOW

Adaptation strategies

- Hanging nodes
- Error indicators
 - drag adjoint

Adapted solution

Iso lift adjoint

Aniso drag adjoint

Iso drag adjoint

NACA 0012, $M_{\infty} = 0.5$, $\alpha = 1^{\circ}$, Re=5000

45 KU KANSAS

Conclusions

- A dual consistent adjoint approach developed for the CPR method
- Isotropic/anisotropic h-adaptation method on simplex meshes using the CPR method is developed
- Results show significant savings of degrees of freedom when compared to the uniform h or p refinements
- > Ongoing work:
 - Add the artificial viscosity to handle shocks
 - Further test the performance of the current method for viscous flow

Support from AFOSR and NASA gratefully acknowledged

