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The SVD-GFD method on hybrid Cartesian-meshfree grid system* 

Primary Motivation for development: applications to biological-related self-

propulsion / locomotion / flight problems.  

Key features of such problems are:   

   Complex geometry 

   Multiple bodies 

   Large boundary motion (due to 

shape changes and whole-body 

motion) and  

   Flow-body/structure interactions 

   Incompressible flows 

   Largely external flows 

*Chew C.S., Yeo K.S., Shu C. (2006) J. Comp. Phys. 218, 510-548. 

Ang S.J., Yeo K.S., Chew C.S., Shu C. (2008) Intl. J. Num. Meth. Engrg. 76, 1892-1929. 

Slow motion Bee in flight (UltraSlo HD)3 - Youtube 

The method that we set up is designed with these in mind.  

After reviewing leading approaches, such FE, FV, Overset grid and IBM, we 

decided to start anew. 



4 

Hybrid Cartesian-meshfree grid system 

For moving boundary/body:  

Meshfree nodes convect with 

the body or boundary. 

    Meshfree nodes around the 

body. 

The hybrid grid comprises: 

    Cartesian background grid  

By ‘meshfree’ is meant the 

absence of presumed 

connectivity between nodes. 

Figure 1. Hybrid Grid 

Meshfree nodes, Cartesian nodes. 
x 

 y 



5 

 

reference  

node 

area of  

support  
support 

radius  

nodes outside 

support area 

nodes in 

support area 

do 

Generalized finite-difference (GFD) 

approximation of derivatives – on a 

set of nodes with a certain radius. 

Standard central finite-difference 

Discretization approximations on the hybrid grid 

Figure 2. Spatial discretization templates 

Finite difference approximations are applied to governing equations: 

   Standard central finite-difference on Cartesian-arranged nodes. 

   Generalized finite-difference on other nodes. 



6 

The generalized finite-difference (GFD) approximation of spatial 

derivatives on a set of meshfree nodes is based on: 

    Taylor expansions and  

    Least square (LS) approximation. 

For a function          of the 3D coordinate variable x, the value of the function at   ( )f x

1 0 1  x x x is given by: 
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where      ,      and      denote the partial derivatives.  
x y z

Applying (1) to n support nodes around the reference node      yields a 

system of linear equations, which relates the derivatives              at the 

reference node to the values of  f  at the support nodes (m set to 4). 

0x

0( )f x



0

2 3 3

19 1 ( , , , , , , , ) |T

x y z x x y y z f         
x

f

where 
1 1 0 2 0 0( , , , )T

n nf f f f f f    f

19[ ] is the configuration matrix of selected meshfree nodesnS 

To close linear system: 

n=19 support nodes are needed for 3D problems and  

n=9 support nodes for 2D problems.  

 1 19 119n n
S 

  f f (2) (n support nodes; m =4 ) 

However, the linear systems thus obtained based on n=19 nodes (3D) and 

n=9 nodes (2D) tend to be poorly-conditioned due to nodal irregularity.  

7 

19 1f 1nfWe want to obtain the derivatives          in terms of the data           at the n 

nodes.  
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Weighted least square approximation 

Usually n>19 (3D) and n>9 (2D) nodes are required for good numerical 

conditioning in (2) (about 1.5 to 2.5 times). 

The weighted error vector                is usually used, where          is a 

diagonal matrix that give greater importance to components of error at 

nodes closer to the reference node. 

 T

nWr r  nW

The conventional least square process (also known as the Normal 

Equation method) then leads to closed system of linear equations for           :    
19 1f

        19 1 119 19 19

T T

n n nn n n
S W S S W   

  f f (4) 

The resulting over-determined system of equations is then solved via a 

least square method, where the Euclidean l2-norm of residual error vector 

 
2

1 19 1192
, :T

n n
S 

    r r r r f f (3) 

is minimized with respect to the solution          (optimal solution).   
19 1f
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The singular value decomposition (SVD) method for least square 

approximation is used here to find the derivatives          ,  19 1f

   19 1 119

pseudo-inverse

n n nn
W S W



 
  f f (5) 

where             is a distance-based (               ) error weighting matrix. nW ][ 0| |i x x

Singular Value Decomposition (SVD) 

The conventional least square loses accuracy and may be unstable to 

rounding-off error according to Trefethen & Bau* 

*Trefethen L.N. & Bau D. (1997) Numerical Linear Algebra, SIAM Philadelphia, PA. 

The singular value decomposition (SVD) method is used extensively in 

large scale data-mining and signal-processing applications to optimally to 

extract significant information.  

For a non-singular (square) matrix [A], the pseudo-inverse                    . 
1[ ] [ ]A A 

Singular value 

decomposition 
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The advantages of SVD over Normal Equation for LS approximation are: 

    Greater numerical stability and accuracy. 

    SVD can be found for any matrix. 

    In highly ill-conditioned situation, a regularization process can be 

carried out to remove ‘noise’ associated with contributions from small 

singular eigenvectors, which are frequently associated with noise in data. 

    Can solve under-determined under-rank problems (n<19 in 3D 

cases), where there is a continuum of solutions, SVD picks the solution 

with smallest norm. 

Note: On a standard Cartesian grid using just n=4 << 9 nodes (2D case) , GFD 

with SVD could accurately recover the result of standard FD. 

Thus SVD gives the GFD scheme on hybrid Cartesian-meshfree grid a high 

degree of numerical stability and robustness in applications.  
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Flow equations 

   Both the meshfree nodes and 

Cartesian background nodes can be 

convected. 

   The latter is particularly useful if we 

want to follow the motion of the swimmer 

or flyer over distances that are much 

longer than its length.  

21
( )

Re
t c p       u u u u u

0 u

where uc is convection velocity for moving 

nodes. 

Flow equations modelled are the incompressible Navier-Stokes equations 

in arbitrary Lagrangian-Eulerian (ALE) form: 

(6) 

(7) 

Hybrid Cartesian 

cum meshfree grid 
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Fractional-step method 

   
1
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The NS equation is discretized in time by the second-order Trapezoidal rule or 

Crank-Nicolson (CN) scheme: 

(8) 
It is solved by a fractional-step projection procedure: 
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Aspects of nodal administration  

   Initial set-up of problem at time t=0:  

•   Solid immersed body/nodes and its enveloping cloud of meshfree may be 

setup by established CAD and FE-based codes. 

•   These will also enable us to identify all the Cartesian nodes that are 

overlapped by the body (and nodal cloud) – these are denoted as Type-1. 

   For GFD, the n nearest nodes to the reference node are normally 

selected as the support nodes. n is typically 1.5 to 2.5 times the minimum 

number. 

   A list of non-empty Cartesian cells, and its meshfree nodal content is 

maintained. The number of non-empty cells is generally very small since the 

meshfree/body nodes typically range over a very small fraction of the total 

computational domain in most problems. 

( , , )x y z  

   To facilitate search for near neighbours, each meshfree and boundary node 

B at a location                      is assigned an 3-index: ( , , )B Bx y zr

 ( , , ) int( / ),int( / ),int( / )B B B Bi j k x x y y z z   

corresponding to the Cartesian background cell                    which contains it. 

(13) 
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   3 categories of Cartesian nodes are identified for stationary boundary 

problems: 

Type 1: Nodes overlapped by body or nodal cloud – they DO NOT participate in the 

flow computation. 

Type 2: Nodes that DO NOT have meshfree/body nodes in its rectangular -

neighbourhood and are thus treated by standard FD. 

Type 3: Nodes that HAVE one or more meshfree/body nodes in its rectangular -

neighbourhood and are thus treated by SVD-GFD. 

   For moving and deforming boundary problems: 

Type 4 Cartesian nodes: Fresh nodes that are uncovered by the moving 

boundary. 

The Nodal Type of the Cartesian nodes in the vicinity of the body changes due to 

boundary motion and needs to be tracked and updated constantly. 

   SVD-GFD is slightly more expensive than LS-GFD which is more costly 

standard FD. However, Meshfree and Cartesian nodes that need GFD treatment 

typically constitute a very small % of total nodal population for external flow 

problems:    < 5% for 2D problems  and   < 2% for 3D problems. 

Nodal administration (Contd.)  
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Close interaction in multi-body 

problems 

A common cause of numerical ill-conditioning 

in GFD is extremely close clustering among 

some nodes.   

When two bodies come into close contact, 

multiple close clustering could occur due to 

merging of meshfree nodal clouds 

A nodal selection scheme to de-cluster 

the support nodes is then necessary. De-

clustering is done by simply discounting 

the unwanted support nodes. A scheme is 

described in Ang et al. (2008)*. 

Oscillating cylinder in a narrow 

slot. Gap=0.075D. 

*Ang S.J., Yeo K.S., Chew C.S., Shu C. (2008) Intl. 

J. Num. Meth. Engrg. 76, 1892-1929. 
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    Complex body geometry.  

Comparable to mesh-based finite-element and finite-volume methods. Better than over-

set/chimera grid methods, which use local coordinate systems around immersed bodies. 

    Relatively simple data structure; avoids re-meshing of mesh-based methods. 

Primarily positional data of meshfree nodes. Nodes can be deleted or added with ease. 

Minimal interpolation is involved except in creation of new node. 

    Simple and precise implementation of boundary conditions on body. 

Compared to Immersed-boundary methods typically, where boundary conditions are 

enforced via distributed nodal forces. 

    Good boundary and boundary layer resolution. 

Compared to Immersed-boundary methods typically; where boundary smearing, leakages 

and feature resolution may be a problem. Cartesian cut-cell methods may be difficult to 

implement in 3D.     

    Generalized Conservation Law (GCL) condition 

Deforming mesh-based schemes must also satisfy GCL to ensure that changes in volume 

with time is taken into account in the numerical conservation equations. 

Some positive features of the numerical scheme: 
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Some weaknesses: 

    Lack advantage of full Cartesian grid as compared to IBM etc. 

Harder to program for parallelization. Currently parallelized for SMP and CUDA-

based GPU systems. 

    Not conservative (in the sense of finite volume). 

This is true for most methods whose implementation are not flux-based. For 

incompressible flows, conservation errors are bounded by discretization errors, 

which become small as grid system is refined.  
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Stationary boundary 

problems 



•   SVD-GFD gives slightly improved 

errors on Randomized grids (n=14). 

•   Absolute errors increase with support 

node number n. Use smallest n 

compatible with stability. 

•   The order of grid convergence is 

2. Regularization at low n can reduce 

convergence order. 

Convergence of numerical solutions on 

Randomized grids: 1800, 3088, 4465. 

19 

*Ang S.J., Yeo K.S., Chew C.S., Shu C. (2008) 

Intl. J. Num. Meth. Engrg. 76, 1892-1929 

Convergence of numerical 

solutions on Cartesian grids. 

•   SVD-GFD gives slightly improved 

errors on Cartesian grids (n=14) when 

compared to LS-GFD. 

•   SVD-GFD with just 4 support nodes 

(under rank by 5) gives similar errors 

with standard FD. 

Test results – 2D Poisson problems* 
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Comparison of CPU times for 3D Poisson problem 

as a function of grid number: (1)  Cartesian grid 

with standard FD,  (2)  Full meshfree grid with SVD-

GFD and (3)  Hybrid Cartesian-meshfree (12.5%) 

grid. 

Test results – 3D Poisson problems* 

*Wang X.Y.,Yeo K.S., Chew C.S., Khoo B.C.  (2008) Comp. & 

Fluids 37, 733-746 

•   Cost of SVD-GFD can be kept 

reasonably low when the 

meshfree nodes are a small 

percentage of the total nodal 

population.  

•   In most external flow 

problems: meshfree/total 

nodes is < 5% for 2D 

problems and <2-3% in 3D 

problems. 
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Test results: Decaying Vortex (2D)* 

     
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Exact solution: 

Solved in a square computational domain: 

   ( , ) 0.5,0.5 0.5,0.5x y    

with Re=10 and a small  t=10-5 on: 

•   Cartesian grid 

•   Randomized grid (Dirichlet pressure BC) 

•   Randomized grid (Neumann pressure BC)  

Spatial accuracy of u and v 

Spatial accuracy of pressure. 

Numerical solutions second-order in space 

for both velocity and pressure. 

*Ang S.J., Yeo K.S., Chew C.S., Shu C. (2008) 

Intl. J. Num. Meth. Engrg. 76, 1892-1929 
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Test results: A decaying flow – temporal accuracy* 

*Chew C.S., Yeo K.S., Shu C. (2006) J. Comp. Phys. 218, 510-548. 

( , ,0) (1 cos2 )sin 2 ,

( , ,0) (cos2 1)sin 2 ,

( , ,0) 0,

u x y x y

v x y y x

p x y

 

 

 

 



Decay of an initial flow field in a 

square box with 81x81 grid points 

at Re=1000: 

pressure: y = 2.0124x + 2.9328

u & v: y = 2.0152x + 2.4945
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Temporal accuracy of velocity and pressure 

relative to reference solution. 

Comparison with Reference 

solution at t=0.1 with t=10-5 :  

Numerical solutions second-order 

in time for both velocity and 

pressure. 
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Test results: Stationary boundary problem – Flow past a sphere 

Re=100: Steady axisymmetric flow with attached vortex. 

Discretization: 3854 nodes on 

sphere with 5 layers of meshfree 

grid.  

 

Domain 20,10,10, Cartesian 

=0.025.  

 

Meshfree nodes <1%. 

Re=250: Quasi-steady non-axisymmetric flow with tilted 

vortex wake. In transition region between 210 – 270 

(from steady axisymmetric to unsteady shedding). 

There are 3 flow regimes. 
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Re=300: Unsteady vortex shedding with Strouhal no. St = Dfs/U = 

0.132 (Johnson et al. St=0.137, Tomboulides et al. St=0.136).  

Note: The meshfree grid 

used here is non-

symmetric with respect 

to flow direction. 

Flow past sphere (Contd.) 
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Moving boundary 

problems  
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Test results: 2D moving nodal patch in a decaying vortex* 

0.25sin( / 3)(1,1)TtV

V 

This case tests the errors generated by a moving 

patch of meshfree nodes (with no physical body) 

in a decaying vortex flow with Re=100. 

The nodal patch covers over the space and its 

nodes partake in flow computation via  

ALE LS-GFD.  

The following are examined:  

•   Errors of ALE nodal convection solution relative 

exact solution. 

•   Errors of solutions with nodal patch versus 

solution with NO patch. 

Nodal patch has nodal interval of 0.8h of background 

grid interval h. 

*Chew C.S., Yeo K.S., Shu C. (2006) J. Comp. Phys. 218, 510-548. 
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2D moving nodal patch (Contd.) 
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nodal patch versus FD solution with no patch. 

•   Error amplification peaks are 

associated with fresh node creation.  

•   Amplification of (u,v) errors due to 

pure nodal convection is very small. 

•   Amplification factor of p errors due 

to pure nodal convection <1.2.  
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Spatial errors (RMS, , L2 norm) under 

LS-GFD with ALE nodal convection at 

Re=100: (a) u and (b) p. 

•   ALE-GFD results maintain 

second-order spatial accuracy. 
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 

 
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Test results: Single moving body 

ALE-LS-GFD versus Moving-frame simulation* 

In moving-frame simulation, one attaches a computational frame to 

the moving body and apply a moving frame formulation of NS equations 

(as many has done). The key advantage here is that the grid is fixed. 

  21

Re

frame
p

t t


      

 

uu
u u u

If we can recreate exactly equivalent boundary conditions, this will provide a 

consistency test of the two formulations. 

*Chew C.S., Yeo K.S., Shu C. (2006) J. Comp. Phys. 218, 510-548. 

Three cases are given below: 

•   Impulsively started cylinder (very abrupt starting condition) 

•   Sinusoidally started cylinder 

•   Sinusoidally oscillating cylinder  
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Present ALE-LS-GFD versus Moving-frame (Contd.)  
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Example applications: Moving bodies in close interaction with Nodal Selection  

Vertical lift coefficient 

Overlapping Meshfree grids. Nodal 

selection scheme used. Gap:0.075D; Re=50. 

Oscillating cylinder through slot in a box 

Stream traces 

and Vorticity 

contours at 

t=21,22,23. 



31 

Moving bodies in close interaction – Contd.  

Two side-by-side cylinders 

oscillating in anti-phase in a box 

(with Nodal Selection) 

Gap at closest approach = 0.044D, 

Re=2Umax D/=1000. 

Stream traces 

and Vorticity 

contours at 

t=21,22,23. 

Closest approach: 

0.044D 



Test results: 2D tandem flapping-wing pair  

32 

In phase stroking Out-of-phase stroking 

Vorticity field (Expt) Vorticity field (Computational) 
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Test results: 3D moving boundary – flapping wings – comparison with 

experimental results* 

*Lua, K. B., Lai, K. C., Lim, T. T., & Yeo, K. S. (2010).  

EXPERIMENTS IN FLUIDS, 49(6), 1263–1291. 

Schematics of test rig. 

Comparison for lift and drag for fruit fly type 

wing at Re =150. 

 Plan form of fruit fly wing 
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Coupled Fluid-body 

interaction 
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Coupled Fluid-body interaction 
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Dynamics of the body is governed by Newton’s Laws: 

(Conservation of Linear and 

Angular Momentum about CM at 

XC. )  

where 

(Total fluid force) 

(Moment of fluid forces about CM 

at XC(t) ) 

(Newtonian fluid stress tensor) 

(14-15) 

(16-17) 

(18) 

(19) 

(20) 

where                               denotes the current configuration of the body.  , ( ), ( )Ct t t X Θ

    
( )

( )  ( ) - [ ]C f
t

t t t dS


  τ x X n
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Coupled Fluid-body interaction (Contd.) 

These are supplemented by the kinematic equations: 

1 2 3( , , )C C C

C Θ i i iwhere                              is the orientation matrix of body frame at CM. 

C C

C C C

d

dt
  Θ ω Θ ω Θ (Body frame rotation about CM) 

C C

d

dt
X V (Translation of CM) (21) 

(22) 

Equations (14,15,21,22) are integrated together with the flow equations. 

The trapezoidal rule can again be applied to the integration of these equations: 

 
1

11

2

n n
n n

t




 


Y Y
ζ ζ

 , , ,C CY X Θ P L  , , ,C

C C gr ζ V ω Θ F F τwhere      and   

(23) 
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Algorithms for Fluid-body Interaction 

The dynamically-coupled equations of fluid and body at time t is solved by a 

time-iterative procedure that iterates on XC(t)  and C(t)  to determine the 

configuration (t, XC(t), C(t)) of the body. The algorithm follows: 

Step 1:   Assume that current flow field solution and body solution Yn  at 

time level (n) is known. 

Step 4:   Evaluate  Yn+1,i+1  by (23).  

Step 2:   Assume that i-th approximation to the body solution Yn+1,i   at time 

level n+1 is known (i = 0 refers to initial guess at time level n+1).  

Step 3:   March the flow equations to determine the fluid force Fn+1,i+1  

and torque  n+1,i+1  and evaluate n+1,i+1 . 

Step 5:   Check for convergence: If 

 ║Yn+1,i+1  Yn+1,i ║>   go to Step 2 with Yn+1,i+1. 

      ║Yn+1,i+1  Yn+1,i ║<   go to Step 1 with Yn+1. 

The above amounts to a fixed-point iterative scheme:  ( ) ( ( ( )))t S F t  

where S and F denote the body dynamic solver and flow solver respectively. 
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Test results:  Falling spheres in an infinite domain at terminal state* 

Sphere with s/=1.05. Surface 

nodes 2966 plus 4 layers of 

meshfree nodes. Computational 

domain: 131x131x381 nodes, 

central region 2Dx2Dx12D with 

=0.04D. 

Re

U
T

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

Abraham [40]

Present results

Comparison of terminal 

velocity of a free falling 

sphere at different Re. 

[40] Abraham F. Physics 

of fluids 1970; 13: 2194-

2195. (Empirical) 

*Yu P. Yeo K.S., Shyam Sundar D.,Ang S.J. 

2011 Intl J. Num Meth. Engrg. 88, 385-408. 

Length of the re-circulating wakes from present 

FSI-based and stationary sphere simulations. 
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Test results: Sedimentation of a sphere in bounded domain 

Physical Domain size: 

0.1x0.1x0.16m 

Computational domain: 

101x101x248 nodes with 

central region 2Dx2Dx9D with 

=0.04D.  

Sphere as before.  

Time [s]
H

/d
p

0 1 2 3 4 5
0

2

4

6

8

10

Re = 1.5, present study

Re = 11.6, present study

Re = 31.9, present study

Re = 1.5, ten Cate' s et al. [44]

Re = 11.6, ten Cate' s et al. [44]

Re = 31.9, ten Cate' s et al. [44]

a)

Time [s]

U
p

[m
s-1

]

0 1 2 3 4 5
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Re = 1.5, present study

Re = 11.6, present study

Re = 31.9, present study

Re = 1.5, ten Cate' s et al. [44]

Re = 11.6, ten Cate' s et al. [44]

Re = 31.9, ten Cate' s et al. [44]

b)

(a) Trajectory  to the bottom of box.  

(b) Sedimentation velocity with time.  

Agreement with experiments better at higher Re. 
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g

2
H

2L

2W

3
H

/2

X

Z

Y

Re

U
T

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

Empirical formution, Sheard et al [47]

Present Results

Terminal velocity for a free falling 

torus ring at different Re.  

Computational domain: L=W=15d, 

H=30d. 181x181x681 nodes. Central 

region 6dx6dx6d with =0.06d.  

Toroidal surface 5420 nodes.  

[47] Sheard GJ, Hourigan K, Thompson 

MC. J Fluid Mech. 2005; 526: 257-275. 

Test results: Falling toroidal ring in an infinite fluid domain 

Flow in global 

frame at Re=50. 



41 

Test results: A freely rotating cylinder (neutrally buoyant) in simple shear flow 

 = 0.47 (b) 

(a) 

(c) 

(a) Schematics of computational domain showing the initial position of the 

neutrally buoyant cylinder in a shear flow. (b) The y-displacement of the cylinder 

with time. (c) The angular velocity  of the cylinder with time tending to  = 0.47. 

Reynolds number is  Re / 40.wU H  

u-velocity 

v-velocity 
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Test results: A freely rotating sphere (neutrally buoyant) in simple shear flow 

Computational domain.  

Domain 1: 211x81x81  

Domain 2: 235x155x155. (40Rx12Rx12R) 

Central region (4R)3 with =0.05R.  

Sphere 7501 nodes.  

Re


10
-1

10
0

10
1

10
20.2

0.25

0.3

0.35

0.4

0.45

0.5

Present Study, Domain 1

Present Study, Domain 2

Mikulencak & Morris [52]

Nirschl et al. [51]

Poe & Acrivos [50]

Rotation rates of freely suspended 

spheres in a simple shear flow. 

Flow field around a freely rotating sphere in 

simple shear flow at Re=50. 
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Sample applications : Free swimming and basic start manoeuvres*  

Cyclic swimming (3D/2D) 

Guided Swimming  : 

•   Swimming straight 

•   Swimming to a target point 

Carangiform fish   

Swimming manoeuvres: 

•   Sharp turn during swimming   

•   C-start   

•   S-start    

 

*Yeo K.S., Ang S.J., Shu C. Computers & 

Fluids 39 (2010) 403–430. 

Batoid (ray-type) fish  

Laterally compressed body.  

BCF propulsion provided mainly by 

the tail / caudal fin. 

Vertically compressed body. 

MFP propulsion provided 

mainly by enlarged side / 

pectoral fins. 

Level swimming   
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Sample applications: Flapping-wing flight with active control 

Rectilinear flight of Fruit fly : 

•   Forward to hovering  

•   Reverse  

Hovering flight  
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High-order SVD-GFD 

scheme with compact 

support 



Recent development - High-order SVD-GFD scheme with compact 

support* 

This represents a generalization of the SVD-GFD scheme.  

Conventional meshfree schemes utilize the lowest-order solution data to 

reconstruct the solution and its derivatives in the neighborhood of the reference 

node. The present method increases the usage of available information at the 

nodes by interpolating over vector sets of nodal data. 

This results in a solution 

reconstruction procedure that is both 

high-order and yet compact (small 

number of support nodes) in space. 

*Shyam Sundar D., Yeo K.S. (2013) A very high order meshless 

method with compact support. Submitted for publication. 
47 

High-order schemes are useful when 

the solution is known to be smooth. 

More details of the scheme will be 

given when the work is published. 



48 

Sample test results: Diffusion equation and Poisson equation in a square 

domain 

Meshfree grid generated from a Cartesian square grid x by 0.3x random 

perturbation.   

   A Diffusion equation 

2I Qp p Degree of interpolation function      :  I

The number of support nodes is set at  Ns = 9  in all cases. 

     , ,0 sin 2 sin 2Q x y x y  

2 0
Q

D Q
t


  



        2, , exp 4 sin 2 sin 2Q x y t D t x y    

In a square domain 1x1, with initial 

condition 

and exact solution 

Solution convergence at time t=1 
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). 

Sample test results (Contd.) 

   Poisson equation 

Solved by Jacobi preconditioned GMRES is 

employed to converge the solution to 10-12. 

 2 2 2 24 sin(2 )Q x y xy    

( , ) sin(2 ).Q x y xy

In a square domain 1x1 with exact 

solution: 
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For a given level of solution accuracy 

the high order schemes can yield a 

lower computational cost. 

  

Eg. For solution accuracy of 10-4, the 

4th order scheme costs 47.5 seconds 

while a 6th order scheme costs only 

4.8 seconds. 

Computation for a linear advection 

equation to t=5.0. 

   A linear advection 

equation 

0
Q

a Q
t


  



in a periodic square domain with 

initial condition: 

 sin 2 ( )Q x y 

Time integration by Strong Stability 

Preserving Runge-Kutta (SSPRK). 
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A preliminary application to incompressible flow problems 

Driven Cavity flow (Re=100) 

Meshfree grid points = 848. 

0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Driven Cavity (Re=100)

Ghia

P1

P2

P3

Y

U
U-velocity along x=0.5. Meshfree solution with 848 

grid nodes versus Ghia et al. (1292 = 16,641 nodes). 

The scheme is still being developed for nonlinear problems such as fluid 

flow problems. 
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End 
Thank you for 
your attention 
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Singular value decomposition (SVD) 
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   The SVD of a mn matrix A is given by  

1 1

1

; ( , , ), ( , , )
r

T T

i i i m n

i

A U V u v U u u V v v


    

U and V are  mm and nn orthogonal matrices whose columns are 

eigenvectors of AAT and ATA respectively.  

 is a mn diagonal matrix of rank r, whose r diagonal values are the square 

roots of non-zero eigenvalues of AAT and ATA. 

Ax

b

2min || ||
x

b Ax
   The least square solution of  

                  Ax = b  

is minimum length (L2-norm) solution   

( ) 1

where ;

{1/ , ,1/ }

T

n m r

x A b A V U

Diag  

   





  

 

Return 



An artificial dissipation model 

An second-order artificial dissipation term of the form* may be added to the 

momentum (NS) equations: 

 2 2d C u

   min / , , min / ,x x x y y yC p x C p y        

d x y   ( , )x yC CCwhere                       and the dissipation coefficient                        are tuned by 

the local pressure gradient p in accordance with Caughey (1988)**:    

The parameter  sets the maximum damping level. Typical values are  1 and 

  10. 

The scheme is easily used in irregular grid system, compared to the usual 

upwind schemes. The damping becomes negligible where the pressure gradient 

p  is small. 

The scheme helps to stabilize computation in regions of strong flow separation, 

such as those encountered around sharp edges. 

*Mendez B, Velazquez  A. Comput Methods Appl Mech Eng (2004) 193:825–48. 

**Caughey DA. AIAA J 1(988) 26:841–51. Return 
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Cyclic Swimming*:  Ref = 5000 

Swimming speed Yaw angle 

Iso-vorticity surfaces 

*Yu P. Yeo K.S., Shyam Sundar D.,Ang S.J. 

Intl J. Num Meth. Engrg. (2011) 88, 385-408. Return 

(Animation) 

(Animation) 



Steady Cyclic Swimming in 2D 

57 

                 tends towards to 

0.25<0.3<0.35 the optimal 

range for oscillating fins 

(Triantafyllou et al.1993) 

Return 

St /fA U
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Guided Swimming* 

Swimming straight: Trajectory and Orientation of 

guided and unguided fish (Ref =2000). 

Swimming to target point (0,1): Trajectory and 

Orientation of guided and unguided fish (Ref =1000). 

*Yeo K.S., Ang S.J., Shu C. Computers & 

Fluids 39 (2010) 403–430. 

Return 

(Animation) 

(Animation) 
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Swimming manoeuvres: 

Sharp turn during swimming at 

Ref =2000. 

Trajectory of fish turning: (left) live fish from 

Wolfgang et al. [36] turning through 72-75 deg., 

(right) present simulation of fish turning through 70 

deg. at Ref =2000. 

Return 

The typical BCF fish is able to make a turn 

in a volume that is the order of its length. 

(Animation) 
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Return 

C-Start: Ref  2500 

The fish bends its body from rest into a C shape and straightens its body – may 

be executed as an attack or escape response. 

Fish initially aligned along the x-axis. 

(Animation) (Animation) 
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S-Start: Ref  2500 

The fish bends its body from rest into an S shape and straighten its body – may 

be executed as an escape response. 

Return 

Fish initially aligned along x-axis. 

(Animation) (Animation) 
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Batoid (Ray-type) Fish  

Rajiiform ray swimming at Ref = 5000 

Moving frame figure: y-vorticity  Level swimming showing pressure 

distribution on top and bottom surfaces 

Return 

(Animation) (Animation) 
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Flapping wings – Active Hovering flight at Ref 150  

Return 

Normal hovering with nearly 

horizontal stroke plane. 
Inclined stroke plane hovering 

with nearly horizontal body 

posture. 

(Animation T:0-20) (Animation T:0-20) 
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Flapping wings – Accelerating-Decelerating flight (Ref 150)  

Return 

(Animation T:0-100) 
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Flapping wings – Reverse flight at 5 cm/s (Ref 150)  

Return 

(Animation T:0-100) 
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