#### An Introduction to Discontinuous High-Order Methods

Z.J. Wang (zjwang.com) Spahr Professor and Chair Department of Aerospace Engineering University of Kansas





#### **Outline**

- Introduction and motivation
- Formulations of discontinuous high-order methods
  - Review of the 1D Godunov finite volume method
  - Different routes to extend the Godunov method to higher-order
  - Further extensions
- Sample applications
  - Implicit LES of transitional flow and flow control
  - Simulations of bio-inspired flows
- Remaining challenges and summary



#### **Introduction – CFD**

- The credibility and usefulness of CFD established over the past two decades;
- Aerospace industry led the way in CFD development. Auto and other industries became heavy users;
- ♦ CFD is no longer:
  - Colorful Fluid Dynamics
  - Continuous Fortran Debugging
  - Complete Financial Disaster
  - Constant Frustration and Depression





\*



#### **Introduction - High-Order Methods**

#### A method is p-th order accurate if

*Error*  $\propto h^p$ 



3<sup>rd</sup> order and higher-order methods are generally called highorder methods in the CFD community

Almost all production and commercial CFD codes use 1<sup>st</sup> or 2<sup>nd</sup>-order finite volume methods.



#### Introduction

- RANS simulations using 2<sup>nd</sup> order methods at cruise condition used extensively in aircraft design
- Various hybrid RANS/LES or unsteady RANS approaches demonstrated promise for improved predictions for flow at high-lift configurations
- However, much finer meshes are required for these vortex dominated flows using 2<sup>nd</sup> order codes







#### Why High-Order Methods Are Useful

- Aeroacoustic problemsVortex dominated flows
- Large eddy simulation (LES) and direct numerical simulation (DNS) of turbulent flow









#### **Continuous or Discontinuous Methods**

#### Continuous



- The numerical solution is continuous across cell or element interfaces.
- Examples: residual distribution (RD), streamwise upwind Petrov-Galerkin (SUPG), ...

#### Discontinuous



- The numerical solution is discontinuous across cell interfaces
- MUSCL/k-exact FV, discontinuous Galerkin (DG), spectral volume/difference (SV/SD), CPR ...
- Both use "upwinding" to account for the wave dynamics of hyperbolic conservation laws





#### What's Next to Improve Accuracy?

#### >Further develop 2nd-order codes

- Improve solution efficiency
- Employ h-adaptations

Develop higher order methods which can

- Handle complex geometries
- Efficient
- Scalable
- ••••

• • • •





#### How to Achieve High-Order Accuracy

- Extend reconstruction stencil
  - Finite difference, compact
  - Finite volume, ENO/WENO, ...
- Add more internal degrees of freedom
  - Finite element/spectral element, discontinuous Galerkin
  - Spectral volume (SV)/spectral difference (SD), flux reconstruction (FR) or correction procedure via reconstruction (CPR), ...
- Hybrid approaches
  - PnPm, reconstructed DG, ...



#### **Extending Stencil vs. More Internal DOFs**

 Simple formulation and easy to understand for structured mesh
 Complicated boundary conditions: high-order one-sided difference on uniform grids may be unstable

- Boundary conditions trivial with uniform accuracy
- Non-uniform and unstructured grids
  - Reconstruction universal
- Scalable
  - Communication through face flux only





#### **Review of Our Related Work**

- ≻Came across DG in the mid-1990s.
- Developed a "finite-volume" version of the DG method spectral volume (SV) in early 2000
- Issues of stability for tetrahedra lead to the development of spectral difference (SD), led by Dr. Yen Liu of NASA Ames, in the mid-2000s
- >On simplexes, SD is unstable.
- Flux reconstruction (FR) was developed by Huynh, which we extended to simplex under lifting collocation penalty (LCP). FR & LCP renamed CPR (correction procedure via reconstruction).





#### **Review of Godunov FV Method**

Consider

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

on domain  $\Omega$  with proper initial and boundary conditions.  $\Omega$  is discretized into non-overlapping CVs { $V_i$ }. Integrating in  $V_i$ 

$$\int_{V_i} \left( \frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} \right) dx = 0$$

$$I_{i-1/2} \qquad I_{i+1/2}$$

$$I_{i+1/2} \qquad I_{i+1/2}$$



#### **Godunov FV Method (cont.)**

We obtain

$$\frac{\partial \overline{u}_i}{\partial t} \Delta x_i + \int_{i-1/2}^{i+1/2} \frac{\partial f}{\partial x} dx = \frac{\partial \overline{u}_i}{\partial t} \Delta x_i + (f_{i+1/2} - f_{i-1/2}) = 0$$

where 
$$\overline{u}_i = \frac{1}{\Delta x_i} \int_{V_i} u dV$$

All we need to do is to compute the fluxes at i+1/2 and i-1/2. However, we only know the cell averaged solutions  $\{\overline{u}_i\}$ 





#### **Godunov FV Method (cont.)**

- Assume the solution is piece-wise constant, or a degree 0 polynomial.
- However, a new problem is created. The solution is discontinuous at the interface
- > In addition, the obvious solution  $\hat{f}_{i+1/2} = [f(\overline{u}_i) + f(\overline{u}_{i+1})]/2$

is unstable

A "shock-tube" problem solved to obtain the flux f( •)





#### **Extension to Higher-Order**

- The only way to improve the solution accuracy is to increase the polynomial degree of the solution at each cell
   KEFV, DG, SV and SD methods all degenerate to the
- Godunov method when p = 0!
- To represent a polynomial of higher than p=0, multiple DOFs are required, e.g.,

$$u(x) \approx U(x) = a + bx + cx^2 + \cdots$$

>These methods differ on how DOFs are defined.





#### K-Exact Finite Volume Method (MUSCL etc.)

- Each cell has one DOF  $\overline{u}_i$
- To build a polynomial with degree higher than
   0, neighboring data are used by requiring

$$\int_{V_i} (a+bx+cx^2)dx = \overline{u}_i \Delta x_i$$

$$\int_{V_{i-1}} (a+bx+cx^2)dx = \overline{u}_{i-1} \Delta x_{i-1}$$

$$\int_{V_{i+1}} (a+bx+cx^2)dx = \overline{u}_{i+1} \Delta x_{i+1}$$

$$\overline{u}_i$$

$$\overline{u}_{i-1}$$



#### **K-Exact Finite Volume Method (cont.)**

The cell average is updated using a FV method

$$\frac{\partial \overline{u}_i}{\partial t} = -\frac{\hat{f}_{i+1/2} - \hat{f}_{i-1/2}}{\Delta x_i}$$

 The flux is computed with the reconstructed solutions at the interface from both the left and right cells

$$\hat{f}_{i+1/2} = \hat{f}_{Riem}(U_{i+1/2}^L, U_{i+1/2}^R)$$



e.g.

$$\hat{f}_{i+1/2} = \frac{1}{2} \Big[ f(U_{i+1/2}^{L}) + f(U_{i+1/2}^{R}) - |\alpha| (U_{i+1/2}^{R} - U_{i+1/2}^{L}) \Big]$$





#### **Discontinuous Galerkin Method**

- Each cell has enough DOFs so that neighboring data are not used in reconstructing a higher-degree polynomial
- One may choose any DOFs in DG and the method is identical
- Different DOFs have different numerical property and efficiency
- Assume we choose a, b and c as the DOFs so that

$$U(x) = a + bx + cx^2$$





#### **Discontinuous Galerkin Method (cont.)**

- Second However, at each cell we need to update 3 DOFs! How?
- A weighed residual formulation is used

$$\int_{V_{i}} 1 * \left( \frac{\partial U}{\partial t} + \frac{\partial f}{\partial x} \right) dx = 0 \quad \text{Finite Volume!}$$

$$\int_{V_{i}} x * \left( \frac{\partial U}{\partial t} + \frac{\partial f}{\partial x} \right) dx = 0$$

$$\int_{V_{i}} x^{2} * \left( \frac{\partial U}{\partial t} + \frac{\partial f}{\partial x} \right) dx = 0$$





#### **DG Formulation (cont.)**

$$\int_{V_{i}} \varphi * \left( \frac{\partial U}{\partial t} + \frac{\partial f}{\partial x} \right) dx$$
  
=  $\frac{\partial}{\partial t} \int_{V_{i}} \varphi U dx + (\varphi \hat{f})_{i+1/2} - (\varphi \hat{f})_{i-1/2} - \int_{V_{i}} f \frac{\partial \varphi}{\partial x} dx$   
= 0

At the interfaces i+1/2 and i-1/2, Riemann fluxes are again used. The volume integral term can be computed using Gauss quadrature.



#### **Spectral Volume Method in 1D**

- Each cell has again enough DOFs so that neighboring data are not used in reconstructing a higher-degree polynomial
- The DOFs are sub-cell averages. The number of sub-cells is p+1 in 1D
- The polynomial at each cell is reconstructed from the sub-cell averages





#### **Spectral Volume Method (cont.)**

 The sub-cell averages are updated using a FV method on the sub-cell

$$\frac{du_{i,j}}{dt}\Delta x_{i,j} + (\hat{f}_{i,j+1/2} - \hat{f}_{i,j-1/2}) = 0$$

- Riemann fluxes are only used across the cell interfaces
- Each cell is partitioned similarly so that they have identical reconstruction formula for nonuniform grids





#### **Spectral Difference Method**

- Each cell has again enough DOFs so that neighboring data are not used in reconstructing a higher-degree polynomial
- The DOFs are point values at solution points (SP). The number of SP is p+1 in 1D
- The polynomial at each cell is reconstructed from the solutions at the SP using Lagrange interpolation





#### **Spectral Difference Method (cont.)**

- In order to update the DOFs, a flux polynomial is built, which is one degree higher than p. A set of flux points are defined
- Fluxes at the flux points are computed. At the interface, the Riemann flux is again used
- Let the flux polynomial be  $F_i(x)$





#### Interesting Results on DG, SV and SD

- Although DG, SV and SD methods can all achieve (p+1)th order of accuracy, DG has the lowest error magnitude;
- SV and SD methods allow larger time steps than the DG method (CFL 1/3 for DG and ½ for SD/SV at second order)
- The partition in the SV method and the location of the flux points in the SD method strongly affect the stability and accuracy



#### Several Recent "Surprises"

The SD scheme only depends on the flux points, independent of the solution points;



The 1D SD and SV schemes are identical if the partition points coincide with flux points!







#### Main Idea of FR (CPR)

#### We again solve

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$$

#### using a differential formulation

$$\frac{\partial U_i(x)}{\partial t} + \frac{\partial F_i(x)}{\partial x} = 0, \quad U_i(x) \in P^k, \quad F_i(x) \in P^{k+1}$$

The DOFs are solutions at a set of "solution points"





#### Main Idea of CPR (FR)

Find a flux polynomial  $F_i(x)$  one degree higher than the solution, which minimizes

$$\left\|\tilde{F}_i(x) - F_i(x)\right\|$$

The use the following to update the DOFs





#### **Connection to Spectral Volume/Difference**

- Define a set of flux points, which are used to build a degree k+1 flux polynomial
- Compute the flux at the flux points
- >At the interfaces use the Riemann flux
- Build a Lagrange flux polynomial





#### **Connection to DG**

> If the following equations are satisfied  $\int_{V_i} \left[ \tilde{F}_i(x) - F_i(x) \right] dx = 0$   $\int_{V_i} \left[ \tilde{F}_i(x) - F_i(x) \right] x dx = 0$ 

>The scheme is DG!





#### **CPR in Multiple Dimensions**

Consider

$$\frac{\partial Q}{\partial t} + \nabla \bullet \vec{F}(Q) = 0$$

The weighted residual form is

$$\int_{V_i} \left( \frac{\partial Q}{\partial t} + \nabla \bullet \vec{F}(Q) \right) W dV = \int_{V_i} \frac{\partial Q}{\partial t} W dV + \int_{\partial V_i} W \vec{F}(Q) \bullet \vec{n} dS - \int_{V_i} \nabla W \bullet \vec{F}(Q) dV$$
  
= 0.

Let *Q<sup>h</sup>* be the discontinuous approximate solution in P<sup>k</sup>. The face flux integral replaced by a Riemann flux

$$\int_{V_i} \frac{\partial Q_i^h}{\partial t} W dV + \int_{\partial V_i} W \tilde{F}^n (Q_i^h, Q_{i+}^h, \vec{n}) dS - \int_{V_i} \nabla W \bullet \vec{F}(Q_i^h) dV = 0.$$

Performing integration by parts to the last term  $\int_{V_i} \frac{\partial Q_i^h}{\partial t} W dV + \int_{V_i} W \nabla \bullet \vec{F}(Q_i^h) dV + \int_{\partial V_i} W \Big[ \tilde{F}^n(Q_i^h, Q_{i+}^h, \vec{n}) - F^n(Q_i^h) \Big] dS = 0.$ 



#### **CPR in 2D (cont.)**

Introduce the lifting operator

$$\int_{V_i} W \delta_i \ dV = \int_{\partial V_i} W \Big[ \tilde{F} \Big] dS$$

where  $\delta_i \in P^k$ ,  $\left[\tilde{F}\right] = \left[\tilde{F}^n(Q_i^h, Q_{i+}^h, \vec{n}) - F^n(Q_i^h)\right]$  Then we have

$$\int_{V_i} \frac{\partial Q_i^h}{\partial t} W dV + \int_{V_i} W \nabla \bullet \vec{F}(Q_i^h) dV + \int_{\partial V_i} W \delta_i dV = 0,$$

which is equivalent to

$$\frac{\partial Q_i^h}{\partial t} + \nabla \bullet \vec{F}(Q_i^h) + \delta_i = 0.$$

In the new formulation, the weighting function completely disappears! Note that  $\delta_i$  depends on W.





#### Lifting Operator – Correction Field

Obviously, the computation of  $\delta_i$  is the key. From

$$\int_{V_i} W \delta_i \ dV = \int_{\partial V_i} W \Big[ \tilde{F} \Big] dS,$$

if  $[\tilde{F}], \delta_{i_i} \in P^k \quad \delta_i$  can be computed explicitly given W. Define a set of "flux points" along the faces, and set of solution points, where the "correction field" is computed as shown. Then

$$\delta_{i,j} = \frac{1}{|V_i|} \sum_{f \in \partial V_i} \sum_{l} \alpha_{j,f,l} [\tilde{F}]_{f,l} S_f,$$

 $\alpha_{j,f,l}$  lifting coefficients independent of Q





#### The CPR Formulation (cont.)

Finally the following equation is solved at the solution point j (collocation points)

$$\frac{\partial Q_{i,j}^h}{\partial t} + \nabla \bullet \vec{F}(Q_{i,j}^h) + \frac{1}{|V_i|} \sum_{f \in \partial V_i} \sum_{l} \alpha_{j,f,l} [\tilde{F}]_{f,l} S_f = 0.$$

The first two terms correspond to the differential equation, and the 3<sup>rd</sup> term is the "lifting penalty" term, thus the name LCP. If all the flux points coincide with the solution points, the formulation is the most efficient





#### **Computation of the Interior Divergence**

How to compute the red term?

$$\frac{\partial Q_{i,j}^{h}}{\partial t} + \nabla \bullet \vec{F}(Q_{i,j}^{h}) + \frac{1}{|V_i|} \sum_{f \in \partial V_i} \sum_{l} \alpha_{j,f,l} [\tilde{F}]_{f,l} S_f = 0.$$



- Lagrange polynomial (LP)
  - Compute the fluxes at the solution points, and then generate Lagrange flux polynomials
  - Take the divergence at the solution points
- Chain rule (CR)

$$\nabla \bullet \vec{F}(Q_i^h) = \frac{\partial F^x(Q_i^h)}{\partial x} + \frac{\partial F^y(Q_i^h)}{\partial y} = \frac{\partial F^x}{\partial Q} \frac{\partial Q_i^h}{\partial x} + \frac{\partial F^y}{\partial Q} \frac{\partial Q_i^h}{\partial y} = \frac{\partial \vec{F}}{\partial Q} \bullet \nabla Q_i^h$$

More accurate!





#### **Mixed Grids**

In order to minimize data reconstruction and communication, solution points coincide with flux points
 For quadrilateral elements, the corrections are one-dimensional!
 Mass matrix is I for all cell-types





#### **Curved Boundaries**

- Transform the governing equations from the (curved) physical domain to the (straight) computational domain;
- The LCP formulation is then applied to the transformed equations in the standard element

Straightforward!







### Viscous Flux Computation - Bassi and Rebay II

1-D demonstration

The common solution at the interface is simply the average of solutions at two sides of the race

$$Q_{f,l}^{com} = \frac{Q_{f,l}^{-} + Q_{f,l}^{+}}{2}$$

The common gradient can be written as the average of the corrected gradients

$$\nabla Q_{f,l}^{com} = \frac{1}{2} \Big( \nabla Q_{f,l}^{-} + r_{f,l}^{-} + \nabla Q_{f,l}^{+} + r_{f,l}^{+} \Big)$$



#### **Further Extensions**

- Extension to mixed meshes (tets, prisms, ...) and highorder boundaries
- Implicit, p-multigrid and line solvers
- K-exact parameter-free moment limiter
- Perfect matched layer absorbing boundary condition for CAA problems
- Extension to moving boundary problems using dynamic meshes
- Implementation on a cluster of CPUs and GPUs



#### **Sample Applications**

- Transitional flow over a wing and separation control using surface roughness
- Simulation of bio-inspired flows





#### **Transitional Flow over SD7003 Wing**

>AOA = 4 deg., Re = 60,000 Spectral difference method >253,600 cells, span = 20% c >No free stream turbulence Implicit LES – no SGS model > 3rd order in time and 3rd and 4th order in space Quadratic boundary >nDOFs/equation • 3rd order: 6,847,200

• 4th order: 16,230,400







#### **Animation of Transition Process**

# Iso-surfaces of Q-criterion colored by streamwise velocity







44

NU



#### **Roughness Bumps for Separation Control**

 $C_L$ 

 $C_D$ 

 $C_{Dp}$ 

 $C_{Dl}$ 

L/D

 $\begin{array}{ll} W_{AC} & \text{Width} \\ L_{BD} & \text{Length} \\ H_{EF} & \text{Height} \\ X_E & \text{Location} \end{array}$ 

(a)

*N*<sub>bump</sub> Number of bumps

Lift coefficient Drag coefficient Drag from pressure Drag from friction Lift-to-drag ratio

(b)





#### **Effects of Bump Size**

| 5 |              | Table 2. Parameters of the roughness bumps |       |                                              |                                             |                 |                                       |               |                      | Λ           |
|---|--------------|--------------------------------------------|-------|----------------------------------------------|---------------------------------------------|-----------------|---------------------------------------|---------------|----------------------|-------------|
| 2 | 2            | Case                                       | $X_E$ | W <sub>AC</sub>                              | L <sub>BD</sub>                             | H <sub>EF</sub> | N <sub>bump</sub>                     | $\delta_E$    | A0A                  | _4          |
| B | ase mo       | ¢ <b>e</b> ∳A_4                            | N/A   | N/A                                          | N/A                                         | N/A             | N/A                                   | 0.0049        |                      |             |
| C | ontrol       | AoA_4c                                     | 0.05  | 0.045                                        | 0.045                                       | 0.0035          | 2                                     | N/A           |                      |             |
| C | ontrol-      | AoA_4c.w                                   | 0.05  | 0.090                                        | 0.045                                       | 0.0035          | 2                                     | N/A           | 0.15                 |             |
| Ø | ontrol-      | AoA_4c.h                                   | 0.05  | 0.045                                        | 0.045                                       | 0.005           | 2                                     | N/A           | € 0.05<br>0<br>-0.05 |             |
|   | (b)<br>AoA_4 | 4c                                         |       | U<br>0.25<br>0.22                            | AoA                                         | 4c.w            |                                       |               | AoA_                 | _4c.h       |
|   |              | 2 03 04 05 08                              | 07 08 | 0.15<br>0.1<br>0.05<br>0.05<br>-0.05<br>-0.1 | 0.15<br>0.1<br>0.05<br>0.05<br>0.05<br>0.01 |                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.7 0.8 0.9 1 |                      | 0.1 0.2 0.3 |



#### **Flow Control Performance**



AoA\_4 (solid line) AoA\_4c (dash line) AoA\_4c.w (dash-dot line) AoA\_4c.h (dash-dot-dot line)

|          |                | <u></u> |                 |                 |      |
|----------|----------------|---------|-----------------|-----------------|------|
| Case     | C <sub>L</sub> | CD      | C <sub>Dp</sub> | C <sub>Df</sub> | L/D  |
| AoA_4    | 0.600          | 2.34e-2 | 1.38e-2         | 0.97e-2         | 25.6 |
| AoA_4c   | 0.593          | 2.05e-2 | 1.00e-2         | 1.05e-2         | 28.9 |
| AoA_4c.w | 0.579          | 2.10e-2 | 0.94e-2         | 1.16e-2         | 27.6 |
| AoA_4c.h | 0.579          | 2.07e-2 | 0.95e-2         | 1.12e-2         | 28.0 |
|          | 1              | '       | ''              |                 |      |

Summary:

- The LSB is reduced or avoided with roughness bumps. L/D increases 12%.
- Larger and taller bumps generate larger disturbances and trigger earlier vortex breakdown

49



#### **Simulation of Bio-Inspired Flows**

- >High-order methods may be more suitable than low order ones because the flow is vortex-dominated
- The solver is extended to handle dynamic meshes
  - Mesh deformation, grid quality issues
  - Geometric conservation law (free-stream preservation)
  - Time accuracy





## Comparison with Experimental Results (cont.)



# **Comparison with Experimental Results - Wake**





#### **3D Simulations – Flapping Motion**

#### Flow Parameters: Re=1200, k=4.5, St=0.33, AR=2.68. Experiments performed by Hu group





# **3D Simulations – Flapping Motion Movie**

 $\bar{C}_{T} = 0.012$ 



Iso-surfaces of Q, colored by streamwise velocity

57

#### **Comparison with Experiment (Hu et al)**





## **Simulation of Flapping and Pitching Motions**

Re=1200, k=4.5, St=0.33, Motion to maximize thrust based on Anderson et al, JFM (1998) vol. 360, pp. 41–72

Dynamic 30x larger than without colored by streamwise pitch velocity



#### **Remaining Challenges in High-Order Methods**

- Low-memory, efficient time integration/iterative solution approaches, and efficient solution algorithms for highly clustered viscous meshes
  - Memory to store the element Jacobian matrix proportional to k<sup>6</sup>
- High-order grid generation, highly clustered curved meshes near wall
- >Error estimates and solution-based hp-adaptations
- Shock capturing to preserve accuracy in smooth regions, convergent and parameter-free



#### Summary

- Gave a brief introduction to high-order methods and why they are useful
- Presented several discontinuous high-order methods as the extension of the Godunov method to higher order accuracy
- Demonstrated the high-order methods with several applications
  - Computation of transitional flow and flow control
  - Bio-inspired flows
- Identified remaining challenges that intensive research efforts are needed



#### **Acknowledgements**

- Support from AFOSR, Navy, DOE, NSF, DARPA, NASA, NVIDIA and ISU
- Scroup members: T. Haga, H. Gao, Y. Zhou, M. Yu, V. Vikas, Yi Li, L. Shi, Yanan Li, C. Zhou

