Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system

Zhijie Chen

Center for Advanced Study in Theoretical Science, National Taiwan University
(joint work with Prof. Chang-Shou Lin and Wenming Zou)
October 22, 2013

Outline

(1) Introduction of the problem

(2) Main results
(3) Main ideas of the proof

The problem

Consider the following coupled Gross-Pitaevskii equations:

$$
\begin{cases}-i \frac{\partial}{\partial t} \Phi_{1}=\Delta \Phi_{1}+\mu_{1}\left|\Phi_{1}\right|^{2} \Phi_{1}+\beta\left|\Phi_{2}\right|^{2} \Phi_{1}, & x \in \Omega, t>0, \\ -i \frac{\partial}{\partial t} \Phi_{2}=\Delta \Phi_{2}+\mu_{2}\left|\Phi_{2}\right|^{2} \Phi_{2}+\beta\left|\Phi_{1}\right|^{2} \Phi_{2}, & x \in \Omega, t>0, \tag{1}\\ \Phi_{j}=\Phi_{j}(x, t) \in \mathbb{C}, \quad j=1,2, & \\ \Phi_{j}(x, t)=0, \quad x \in \partial \Omega, t>0, j=1,2, & \end{cases}
$$

where $\Omega=\mathbb{R}^{N}$ or $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $N \leq 3$, $i=\sqrt{-1}$ is the imaginary unit, $\mu_{1}, \mu_{2}>0$ and $\beta \neq 0$ is a coupling constant.

Motivation from Physics

- System (1) arises as mathematical models from several physical problems, such as nonlinear optics and the Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Einstein condensates.
- In physics, the sign of μ_{j} represents the self-interactions of the single j-th component. If $\mu_{j}>0$ as considered here, it is called the focusing case, in opposition to the defocusing case where $\mu_{j}<0$.
- The sign of β determines whether the interactions between the two components are repulsive or attractive, i.e., the interaction is attractive if $\beta>0$, and the interaction is repulsive if $\beta<0$.

Motivation from Physics

- System (1) arises as mathematical models from several physical problems, such as nonlinear optics and the Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Einstein condensates.
- In physics, the sign of μ_{j} represents the self-interactions of the single j-th component. If $\mu_{j}>0$ as considered here, it is called the focusing case, in opposition to the defocusing case where $\mu_{j}<0$.
- The sign of β determines whether the interactions between the two components are repulsive or attractive, i.e., the interaction is attractive if $\beta>0$, and the interaction is repulsive if $\beta<0$.

Motivation from Physics

- System (1) arises as mathematical models from several physical problems, such as nonlinear optics and the Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Einstein condensates.
- In physics, the sign of μ_{j} represents the self-interactions of the single j-th component. If $\mu_{j}>0$ as considered here, it is called the focusing case, in opposition to the defocusing case where $\mu_{j}<0$.
- The sign of β determines whether the interactions between the two components are repulsive or attractive, i.e., the interaction is attractive if $\beta>0$, and the interaction is repulsive if $\beta<0$.

Solitary wave solutions

- To obtain solitary wave solutions of the system (1), we set $\Phi_{j}(x, t)=e^{i \lambda_{j} t} u_{j}(x)$ for $j=1,2$. Then system (1) is reduced to the following elliptic system:

$$
\begin{cases}-\Delta u_{1}+\lambda_{1} u_{1}=\mu_{1} u_{1}^{3}+\beta u_{1} u_{2}^{2}, & x \in \Omega, \tag{2}\\ -\Delta u_{2}+\lambda_{2} u_{2}=\mu_{2} u_{2}^{3}+\beta u_{1}^{2} u_{2}, & x \in \Omega, \\ \left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0 . & \end{cases}
$$

- When $\Omega=\mathbb{R}^{N}$, the Dirichlet boundary condition
$\left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0$ means
$u_{1}(x) \rightarrow 0$ and $u_{2}(x) \rightarrow 0, \quad$ as $|x| \rightarrow \infty$
and we assume $\lambda_{1}, \lambda_{2}>0 ;$ When Ω is a smooth bounded
domain, we let $\lambda_{1}(\Omega)$ be the first eigenvalue of $-\Delta$ in Ω with
Dirichlet boundary condition, and assume $\lambda_{1}, \lambda_{2}>-\lambda_{1}(\Omega)$.
Then operators $-\Delta+\lambda_{j}$ are positive definite.

Solitary wave solutions

- To obtain solitary wave solutions of the system (1), we set $\Phi_{j}(x, t)=e^{i \lambda_{j} t} u_{j}(x)$ for $j=1,2$. Then system (1) is reduced to the following elliptic system:

$$
\begin{cases}-\Delta u_{1}+\lambda_{1} u_{1}=\mu_{1} u_{1}^{3}+\beta u_{1} u_{2}^{2}, & x \in \Omega, \tag{2}\\ -\Delta u_{2}+\lambda_{2} u_{2}=\mu_{2} u_{2}^{3}+\beta u_{1}^{2} u_{2}, & x \in \Omega, \\ \left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0 . & \end{cases}
$$

- When $\Omega=\mathbb{R}^{N}$, the Dirichlet boundary condition
$\left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0$ means

$$
u_{1}(x) \rightarrow 0 \text { and } u_{2}(x) \rightarrow 0, \quad \text { as }|x| \rightarrow \infty,
$$

and we assume $\lambda_{1}, \lambda_{2}>0$; When Ω is a smooth bounded domain, we let $\lambda_{1}(\Omega)$ be the first eigenvalue of $-\Delta$ in Ω with Dirichlet boundary condition, and assume $\lambda_{1}, \lambda_{2}>-\lambda_{1}(\Omega)$. Then operators $-\Delta+\lambda_{j}$ are positive definite.

Different kinds of solutions

Definition

We call a solution (u_{1}, u_{2}) nontrivial if $u_{j} \not \equiv 0$ for $j=1,2$, a solution $\left(u_{1}, u_{2}\right)$ semi-trivial if $\left(u_{1}, u_{2}\right)$ is type of $\left(u_{1}, 0\right)$ or $\left(0, u_{2}\right)$. A solution (u_{1}, u_{2}) is called positive if $u_{j}>0$ in Ω for $j=1,2$, a solution $\left(u_{1}, u_{2}\right)$ sign-changing if both u_{1} and u_{2} change sign, a solution semi-nodal if one component is positive and the other one changes sign.

Remark
Problem (2) has two kinds of semi-trivial solutions $\left(\omega_{1}, 0\right)$ and $\left(0, \omega_{2}\right)$ where ω_{i} are nontrivial solutions of the scalar equation

We are only concerned with nontrivial solutions of problem (2). The existence of infinitely many semi-trivial solutions makes the study of nontrivial solutions rather complicated and delicate.

Different kinds of solutions

Definition

We call a solution (u_{1}, u_{2}) nontrivial if $u_{j} \not \equiv 0$ for $j=1,2$, a solution $\left(u_{1}, u_{2}\right)$ semi-trivial if $\left(u_{1}, u_{2}\right)$ is type of $\left(u_{1}, 0\right)$ or $\left(0, u_{2}\right)$. A solution (u_{1}, u_{2}) is called positive if $u_{j}>0$ in Ω for $j=1,2$, a solution $\left(u_{1}, u_{2}\right)$ sign-changing if both u_{1} and u_{2} change sign, a solution semi-nodal if one component is positive and the other one changes sign.

Remark

Problem (2) has two kinds of semi-trivial solutions $\left(\omega_{1}, 0\right)$ and $\left(0, \omega_{2}\right)$, where ω_{i} are nontrivial solutions of the scalar equation

$$
\begin{equation*}
-\Delta u+\lambda_{i} u=\mu_{i} u^{3}, \quad u \in H_{0}^{1}(\Omega) \tag{3}
\end{equation*}
$$

We are only concerned with nontrivial solutions of problem (2). The existence of infinitely many semi-trivial solutions makes the study of nontrivial solutions rather complicated and delicate.

A more general system

There is a more general k-coupled system ($k \geq 3$), namely

$$
\left\{\begin{array}{l}
-\Delta u_{j}+\lambda_{j} u_{j}=\mu_{j} u_{j}^{3}+\sum_{i \neq j} \beta_{i j} u_{i}^{2} u_{j}, \quad \text { in } \Omega, \tag{4}\\
\left.u_{j}\right|_{\partial \Omega}=0, \quad j=1, \cdots, k .
\end{array}\right.
$$

Here $\beta_{i j}=\beta_{j i}$. In general, system (4) is more delicate than system (2).

In the last decades, systems (2) and (4) (both in the focusing case and defocusing case) have received ever-increasing interest and have been studied intensively from many aspects, such as ground state (or least energy) solutions, multiple solutions, a priori estimates, asymptotic behaviors and phase seperations and so on. See papers such as

Conti-Terracini-Verzini(ANIHPC2002, JFA2003), Chang-Lin-Lin-Lin(PhysD2004), Lin-Wei(CMP2005, ANIHPC2005, JDE2006), Bartsch-Wang(JPDE2006), Ambrosetti-Colorado(JLMS2007), Sirakov(CMP2007), Bartsch-Wang-Wei (JFPTA-2007), Liu-Wang(CMP2008, ANS2010), Wei-Weth(ARMA2008, Nonlinearity2008), Terracini-Verzini(ARMA2009), Dancer-Wei(TAMS2009), Dancer-Wei-Weth(ANIHPC2010), Noris-Ramos(PAMS2010), Bartsch-Dancer-Wang(CVPDE2010), Noris-Tavares-Terracini-Verzini(CPAM2010, JEMS2012), Tavares-Terracini-Verzini-Weth(CPDE2011), Ikoma-Tanaka(CVPDE2011), Tavares-Terracini(CVPDE2012, ANIHPC2012), Chen-Zou(ARMA2012, CVPDE2012), Wei-Yao(CPAA2012), Dancer-Wang-Zhang(JFA2012), Quittner-Souplet(CMP2012), Sato-Wang(ANIHPC2013),

Multiple positive solutions under symmetric conditions

- Symmetric conditions: $\lambda_{1}=\lambda_{2}=\lambda$ and $\mu_{1}=\mu_{2}=\mu$. Problem (2) is invariant under $(u, v) \longmapsto(v, u)$.

Dancer, Wei and Weth (ANIHPC2010) proved the existence of infinitely many positive solutions of (2), provided $\beta \leq-\mu$. The assumption $\beta \leq-\mu$ is sharp due to a priori estimates for $\beta>-\sqrt{\mu_{1} \mu_{2}}$ $\left\|u_{1}\right\|_{L^{\infty}(\Omega)}+\left\|u_{2}\right\|_{L^{\infty}(\Omega)} \leq C(\beta)$, for all positive solutions $\left(u_{1}, u_{2}\right)$.

See also Quittner-Souplet(CMP2012) for a priori estimates about more general k-coupled systems (such as k-coupled system (4)).

Multiple positive solutions under symmetric conditions

- Symmetric conditions: $\lambda_{1}=\lambda_{2}=\lambda$ and $\mu_{1}=\mu_{2}=\mu$. Problem (2) is invariant under $(u, v) \longmapsto(v, u)$.
- Dancer, Wei and Weth (ANIHPC2010) proved the existence of infinitely many positive solutions of (2), provided $\beta \leq-\mu$. The assumption $\beta \leq-\mu$ is sharp due to a priori estimates for $\beta>-\sqrt{\mu_{1} \mu_{2}}$:
$\left\|u_{1}\right\|_{L^{\infty}(\Omega)}+\left\|u_{2}\right\|_{L^{\infty}(\Omega)} \leq C(\beta)$, for all positive solutions $\left(u_{1}, u_{2}\right)$.
See also Quittner-Souplet(CMP2012) for a priori estimates about more general k-coupled systems (such as k-coupled system (4)).

Multiple positive solutions under symmetric conditions

- If Ω is a ball or \mathbb{R}^{N} (i.e., radially symmetric), infinitely many positive radial solutions, whose profiles are closely related to sign-changing solutions of the scalar equation $-\Delta u+\lambda u=\mu u^{3}$, were also obtained. See Wei-Weth (ARMA2008) for sysem (2), where they proved: Let Ω be a ball and give $k \in \mathbb{N}$, then for each $\beta \leq-\mu$, (2) has a positive radial solution (u_{β}, v_{β}) such that $u_{\beta}-v_{\beta}$ changes sign precisely k times. Moreover, letting $\beta \rightarrow-\infty, u_{\beta} \rightarrow W^{+}$and $v_{\beta} \rightarrow W^{-}$in $H_{r}(\Omega) \cap C(\bar{\Omega})$, where $W^{ \pm}=\max \{0, \pm W\}$ and W is a radial sign-changing solution of $-\Delta u+\lambda u=\mu u^{3}$ which changes sign precisely k times.

See also Terracini-Verzini(ARMA2009) for more general results for k-coupled system (4), and Bartsch-Dancer-Wang (CVPDE2010) for sysem (2) without assumption $\mu_{1}=\mu_{2}$ (An idea of global bifurcation)

Multiple positive solutions under symmetric conditions

- If Ω is a ball or \mathbb{R}^{N} (i.e., radially symmetric), infinitely many positive radial solutions, whose profiles are closely related to sign-changing solutions of the scalar equation $-\Delta u+\lambda u=\mu u^{3}$, were also obtained. See Wei-Weth (ARMA2008) for sysem (2), where they proved: Let Ω be a ball and give $k \in \mathbb{N}$, then for each $\beta \leq-\mu$, (2) has a positive radial solution (u_{β}, v_{β}) such that $u_{\beta}-v_{\beta}$ changes sign precisely k times. Moreover, letting $\beta \rightarrow-\infty, u_{\beta} \rightarrow W^{+}$and $v_{\beta} \rightarrow W^{-}$in $H_{r}(\Omega) \cap C(\bar{\Omega})$, where $W^{ \pm}=\max \{0, \pm W\}$ and W is a radial sign-changing solution of $-\Delta u+\lambda u=\mu u^{3}$ which changes sign precisely k times.
- See also Terracini-Verzini(ARMA2009) for more general results for k-coupled system (4), and Bartsch-Dancer-Wang (CVPDE2010) for sysem (2) without assumption $\mu_{1}=\mu_{2}$ (An idea of global bifurcation).

An open question about Multiple positive solutions

- An open question: For $\beta \leq-\sqrt{\mu_{1} \mu_{2}}$, whether (2) has infinitely many positive solutions without symmetric assumptions $\lambda_{1}=\lambda_{2}$ or $\mu_{1}=\mu_{2}$?

A recent progress: Guo and Wei(2013) give an positive answer in the case where $N=2, \Omega$ is a bounded domain and $\mu_{1}=\mu_{2}=\mu$, but without assumption $\lambda_{1}=\lambda_{2}$. An idea of perturbation:

An open question about Multiple positive solutions

- An open question: For $\beta \leq-\sqrt{\mu_{1} \mu_{2}}$, whether (2) has infinitely many positive solutions without symmetric assumptions $\lambda_{1}=\lambda_{2}$ or $\mu_{1}=\mu_{2}$?
- A recent progress: Guo and Wei(2013) give an positive answer in the case where $N=2, \Omega$ is a bounded domain and $\mu_{1}=\mu_{2}=\mu$, but without assumption $\lambda_{1}=\lambda_{2}$. An idea of perturbation:

$$
\begin{cases}-\Delta u_{1}+\lambda u_{1}=\mu u_{1}^{3}+\beta u_{1} u_{2}^{2}+\varepsilon u_{1}, & x \in \Omega \\ -\Delta u_{2}+\lambda u_{2}=\mu u_{2}^{3}+\beta u_{1}^{2} u_{2}-\varepsilon u_{2}, & x \in \Omega \\ \left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0\end{cases}
$$

Multiple nontrivial solutions without symmetric condition

If we do not assume symmetric conditions $\lambda_{1}=\lambda_{2}$ or $\mu_{1}=\mu_{2}$, multiple nontrivial solutions can also be obtained.

- Liu and Wang (CMP2008) obtained finite multiple nontrivial solutions provided $\beta>0$ small or large, i.e., given $k \in \mathbb{N}$, there exists $0<\beta_{k}<\beta_{k}^{\prime}$ such that (2) has at least k nontrivial solutions for $0<\beta<\beta_{k}$ or $\beta>\beta_{k}^{\prime}$. Infinitely many nontrivial solutions for $\beta<0$ were also obtained by Liu and Wang (ANS2010). No information about the sign of these solutions.
- Sato and Wang (ANIHPC2013) obtained infinitely many semi-positive solutions (i.e., at least one component is positive) for $\beta<0$ and finite multiple semi-positive solutions for $\beta>0$ small or large. Whether the other component positive or sign-changing is unknown.

Multiple nontrivial solutions without symmetric condition

If we do not assume symmetric conditions $\lambda_{1}=\lambda_{2}$ or $\mu_{1}=\mu_{2}$, multiple nontrivial solutions can also be obtained.

- Liu and Wang (CMP2008) obtained finite multiple nontrivial solutions provided $\beta>0$ small or large, i.e., given $k \in \mathbb{N}$, there exists $0<\beta_{k}<\beta_{k}^{\prime}$ such that (2) has at least k nontrivial solutions for $0<\beta<\beta_{k}$ or $\beta>\beta_{k}^{\prime}$. Infinitely many nontrivial solutions for $\beta<0$ were also obtained by Liu and Wang (ANS2010). No information about the sign of these solutions.
- Sato and Wang (ANIHPC2013) obtained infinitely many semi-positive solutions (i.e., at least one component is positive) for $\beta<0$ and finite multiple semi-positive solutions for $\beta>0$ small or large. Whether the other component positive or sign-changing is unknown.

Multiple sign-changing or semi-nodal solutions

There are few results about the existence of sign-changing or semi-nodal solutions to (2) in the literature.

- When $\Omega=\mathbb{R}^{N}$, radially symmetric sign-changing solutions with a prescribed number of zeros were proved either for $\beta>0$ large (Maia-Montefusco-Pellacci (CCM2008)) or for $\beta>0$ small (Kim-Kwon-Lee (NA2013)), i.e., given $h, k \in \mathbb{N} \cup\{0\}$, there exist $0<\beta_{h k}<\beta_{h k}^{\prime}$ such that for $0<\beta<\beta_{h k}$ or $\beta>\beta_{h k}^{\prime}$, (2) has a radially symmetric solution $\left(u_{1}, u_{2}\right)$ with u_{1} changing sign precisely h times and u_{2} changing sign precisely k times. Clearly their methods can not be applied to obtain multiple sign-changing solutions for the non-radial bounded domain case.

Sign-changing solutions in the defocusing case $\mu_{j}<0$

Tavares and Terracini (ANIHPC2012) studied the following general k-coupled system in the defocusing case

$$
\left\{\begin{array}{l}
-\Delta u_{j}-\mu_{j} u_{j}^{3}-\beta u_{j} \sum_{i \neq j} u_{i}^{2}=\lambda_{j} u_{j}, \quad \text { in } \Omega, \tag{5}\\
u_{j} \in H_{0}^{1}(\Omega), \quad \int_{\Omega} u_{j}^{2} d x=1, \quad j=1, \cdots, k,
\end{array}\right.
$$

where Ω is a smooth bounded domain, and $\beta<0, \mu_{j} \leq 0$ are all fixed constants. They proved that there exist infinitely many $\lambda=\left(\lambda_{1}, \cdots, \lambda_{k}\right) \in \mathbb{R}^{m}$ and $u=\left(u_{1}, \cdots, u_{k}\right) \in H_{0}^{1}\left(\Omega, \mathbb{R}^{m}\right)$ such that (u, λ) are sign-changing solutions of (5). That is, λ_{j} is not fixed a priori but appears as a Lagrange multiplier. Therefore, problem (5) is completely different from problem (2) we consider here, for which, we deal with the focusing case $\mu_{j}>0$, and $\lambda_{j}, \mu_{j}, \beta$ are all fixed constants.

Natural questions

For problem (2), since the related functional is even both for u_{1} and u_{2}, it is natural to suspect that (2) may have sign-changing solutions. So far, there are two natural questions about sign-changing solutions which seem to be still open.
(1) When $\beta<0$, whether (2) has infinitely many sign-changing solutions for both the entire space case and the bounded domain case?
(2) When $\beta>0$, whether (2) has multiple sign-changing solutions for the non-radial bounded domain case?

We can ask similar questions about semi-nodal solutions.

The repulsive case $\beta<0$: Sign-changing solutions

Theorem 1(C-Lin-Zou2012)

Let $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain and $\beta<0$. Then (2) has infinitely many sign-changing solutions $\left(u_{n, 1}, u_{n, 2}\right)$ such that

$$
\left\|u_{n, 1}\right\|_{L^{\infty}(\Omega)}+\left\|u_{n, 2}\right\|_{L^{\infty}(\Omega)} \rightarrow+\infty \quad \text { as } n \rightarrow+\infty .
$$

The repulsive case $\beta<0$: Sign-changing solutions

Definition

A nontrivial solution is called a least energy solution, if its functional energy is minimal among all nontrivial solutions. A sign-changing solution is called a least energy sign-changing solution, if its functional energy is minimal among all sign-changing solutions.

For $-\infty<\beta<\beta_{0}$ where β_{0} is a positive constant, Lin and Wei (ANIHPC2005) proved that (2) has a least energy solution which turns out to be a positive solution. See Sirakov (CMP2007) for large β.

The repulsive case $\beta<0$: Sign-changing solutions

Definition

A nontrivial solution is called a least energy solution, if its functional energy is minimal among all nontrivial solutions. A sign-changing solution is called a least energy sign-changing solution, if its functional energy is minimal among all sign-changing solutions.

For $-\infty<\beta<\beta_{0}$ where β_{0} is a positive constant, Lin and Wei (ANIHPC2005) proved that (2) has a least energy solution which turns out to be a positive solution. See Sirakov (CMP2007) for large β.

Theorem 2(C-Lin-Zou2012)

Under the same assumptions in Theorem 1, problem (2) has a least energy sign-changing solution $\left(u_{1}, u_{2}\right)$. Moreover, both u_{1} and u_{2} have exactly two nodal domains.

The repulsive case $\beta<0$: Semi-nodal solutions

Theorem 3(C-Lin-Zou2012)

Under the same assumptions in Theorem 1, problem (2) has infinitely many semi-nodal solutions $\left\{\left(u_{n, 1}, u_{n, 2}\right)\right\}_{n \geq 2}$ such that
(1) $u_{n, 1}$ changes sign and $u_{n, 2}$ is positive;
(2) $\left\|u_{n, 1}\right\|_{L^{\infty}(\Omega)}+\left\|u_{n, 2}\right\|_{L^{\infty}(\Omega)} \rightarrow+\infty$ as $n \rightarrow+\infty$;
(3) $u_{n, 1}$ has at most n nodal domains. In particular, $u_{2,1}$ has exactly two nodal domains, and ($u_{2,1}, u_{2,2}$) has the least functional energy among all nontrivial solutions whose first component changes sign.

Remark

Similarly, we can prove that (2) has infinitely many semi-nodal solutions $\left\{\left(v_{n, 1}, v_{n, 2}\right)\right\}_{n \geq 2}$ such that $v_{n, 1}$ is positive, $v_{n, 2}$ changes sign and has at most n nodal domains. In the symmetric case where $\lambda_{1}=\lambda_{2}$ and $\mu_{1}=\mu_{2},\left(u_{n, 1}, u_{n, 2}\right)$ obtained in Theorem 3 and ($v_{n, 1}, v_{n, 2}$) may be the same solution in the sense of $u_{n, 1}=v_{n, 2}$ and $u_{n, 2}=v_{n, 1}$. However, if either $\lambda_{1} \neq \lambda_{2}$ or $\mu_{1} \neq \mu_{2}$, then $\left(u_{n, 1}, u_{n, 2}\right)$ and ($v_{n, 1}, v_{n, 2}$) are really different solutions.
Z. Chen, C.-S. Lin and W. Zou, Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, arXiv: 1212.3773v1 [math.AP]

Remark

Similarly, we can prove that (2) has infinitely many semi-nodal solutions $\left\{\left(v_{n, 1}, v_{n, 2}\right)\right\}_{n \geq 2}$ such that $v_{n, 1}$ is positive, $v_{n, 2}$ changes sign and has at most n nodal domains. In the symmetric case where $\lambda_{1}=\lambda_{2}$ and $\mu_{1}=\mu_{2},\left(u_{n, 1}, u_{n, 2}\right)$ obtained in Theorem 3 and ($v_{n, 1}, v_{n, 2}$) may be the same solution in the sense of $u_{n, 1}=v_{n, 2}$ and $u_{n, 2}=v_{n, 1}$. However, if either $\lambda_{1} \neq \lambda_{2}$ or $\mu_{1} \neq \mu_{2}$, then $\left(u_{n, 1}, u_{n, 2}\right)$ and ($v_{n, 1}, v_{n, 2}$) are really different solutions.
Z. Chen, C.-S. Lin and W. Zou, Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, arXiv: 1212.3773v1 [math.AP].

Consider the general k-coupled system (4)

$$
\left\{\begin{array}{l}
-\Delta u_{j}+\lambda_{j} u_{j}=\mu_{j} u_{j}^{3}+\sum_{i \neq j} \beta_{i j} u_{i}^{2} u_{j}, \quad \text { in } \Omega, \\
u_{j} \mid \partial \Omega=0, \quad j=1, \cdots, k .
\end{array}\right.
$$

Remark

We did not consider this general k-coupled system in our paper. However, by using the same ideas, in the repulsive case where $\beta_{i j}<0$ for any $i \neq j$, similar results as the three theorems above hold for the general k-system (4) with $k \geq 3$. That is, for any fixed $1 \leq m \leq k$, the general k-coupled system has infinitely many nontrivial solutions ($u_{1, n}, \cdots, u_{m, n}, u_{m+1, n}, \cdots, u_{k, n}$) with the first m components $u_{j, n}$, $1 \leq j \leq m$, sign-changing and the rest $k-m$ components positive.

The attractive case $\beta>0$

The attractive case $\beta>0$ is different from the repulsive case $\beta<0$, and here we can only obtain finite multiple solutions.

Theorem 4(C-Lin-Zou, JDE2013)

Let $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain. Then for any $k \in \mathbb{N}$ there exists $\beta_{k}>0$ such that for each fixed $\beta \in\left(0, \beta_{k}\right)$, system (2) has at least k sign-changing solutions and k semi-nodal solutions with the first component sign-changing and the second component positive.

Theorem 5(C-Lin-Zou, JDE2013)
Let $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain. Then there exists
$\beta_{1}^{\prime} \in\left(0, \beta_{1}\right]$ such that system (2) has a least energy sign-changing
solution for each $\beta \in\left(0, \beta_{1}^{\prime}\right)$.

The attractive case $\beta>0$

The attractive case $\beta>0$ is different from the repulsive case $\beta<0$, and here we can only obtain finite multiple solutions.

Theorem 4(C-Lin-Zou, JDE2013)

Let $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain. Then for any $k \in \mathbb{N}$ there exists $\beta_{k}>0$ such that for each fixed $\beta \in\left(0, \beta_{k}\right)$, system (2) has at least k sign-changing solutions and k semi-nodal solutions with the first component sign-changing and the second component positive.

Theorem 5(C-Lin-Zou, JDE2013)

Let $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain. Then there exists $\beta_{1}^{\prime} \in\left(0, \beta_{1}\right]$ such that system (2) has a least energy sign-changing solution for each $\beta \in\left(0, \beta_{1}^{\prime}\right)$.

The entire space case $\Omega=\mathbb{R}^{N}$

Remark

Theorems 1-5 are all stated in the bounded domain case. Let $\Omega=\mathbb{R}^{N}$ with $N=2,3$. Then by working in the radial function space $H_{r}^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): u\right.$ is radially symmetric $\}$ and recalling the compactness of $H_{r}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{4}\left(\mathbb{R}^{N}\right)$, all the existence results above also hold via the same proof. The main difference is that, in the case $\Omega=\mathbb{R}^{N}$, all sign-changing and semi-nodal solutions are radially symmetric, and the least energy sign-changing solution is only in the sense of having the least energy among all radially symmetric sign-changing solutions.

Remarks

Open problem 1

From results of Dancer, Wei and Weth(ANIHPC2010), the sharp range is $\left(-\infty,-\sqrt{\mu_{1} \mu_{2}}\right)$ when seeking infinitely many positive solutions. However, we do not know what is the sharp range of β when seeking infinitely many sign-changing or semi-nodal solutions. This seems to be a challenging open problem since, in general, we can not obtain a priori estimates for sign-changing and semi-nodal solutions.

Remarks

Open problem 1

From results of Dancer, Wei and Weth(ANIHPC2010), the sharp range is $\left(-\infty,-\sqrt{\mu_{1} \mu_{2}}\right)$ when seeking infinitely many positive solutions. However, we do not know what is the sharp range of β when seeking infinitely many sign-changing or semi-nodal solutions. This seems to be a challenging open problem since, in general, we can not obtain a priori estimates for sign-changing and semi-nodal solutions.

Open problem 2
For the non-radial bounded domain case, we can only obtain multiple sign-changing and semi-nodal solutions for $\beta>0$ small. Whether sign-changing or semi-nodal solutions exist or not for $\beta>0$ large remains open. Different ideas are needed, since from the next result, we know that our method does not work for all $\beta>0$.

An nonexistence result of semi-nodal solutions

Theorem 6

Let $N \leq 3$ and $\left(u_{1}, u_{2}\right)$ be a nontrivial solution of

$$
\begin{cases}-\Delta u_{1}+\lambda u_{1}=\mu u_{1}^{3}+\mu u_{1} u_{2}^{2}, & x \in \mathbb{R}^{N} \tag{6}\\ -\Delta u_{2}+\lambda u_{2}=\mu u_{2}^{3}+\mu u_{1}^{2} u_{2}, & x \in \mathbb{R}^{N} \\ u_{1}, u_{2} \in H^{1}\left(\mathbb{R}^{N}\right) & \end{cases}
$$

with $u_{1}>0$. Then $u_{2}=C u_{1}$ for some constant $C \neq 0$. In particular, (6) has no semi-nodal solutions.

Remark
 When $N=1$ and u_{1}, u_{2} are both positive, this result $u_{2}=C u_{1}$ has been proved by Wei and Yao (CPAA2012)

An nonexistence result of semi-nodal solutions

Theorem 6

Let $N \leq 3$ and $\left(u_{1}, u_{2}\right)$ be a nontrivial solution of

$$
\begin{cases}-\Delta u_{1}+\lambda u_{1}=\mu u_{1}^{3}+\mu u_{1} u_{2}^{2}, & x \in \mathbb{R}^{N} \tag{6}\\ -\Delta u_{2}+\lambda u_{2}=\mu u_{2}^{3}+\mu u_{1}^{2} u_{2}, & x \in \mathbb{R}^{N} \\ u_{1}, u_{2} \in H^{1}\left(\mathbb{R}^{N}\right) & \end{cases}
$$

with $u_{1}>0$. Then $u_{2}=C u_{1}$ for some constant $C \neq 0$. In particular, (6) has no semi-nodal solutions.

Remark

When $N=1$ and u_{1}, u_{2} are both positive, this result $u_{2}=C u_{1}$ has been proved by Wei and Yao (CPAA2012).

An open question

Since

$$
\int_{\Omega} u_{1} u_{2}\left[\left(\lambda_{2}-\lambda_{1}\right)+\left(\mu_{1}-\beta\right) u_{1}^{2}+\left(\beta-\mu_{2}\right) u_{2}^{2}\right] d x=0
$$

when $\lambda_{1} \leq \lambda_{2}$ and $\mu_{1} \geq \beta \geq \mu_{2}$ and either $\mu_{1}>\mu_{2}$ or $\lambda_{1}<\lambda_{2}$, system (2) has no nontrivial positive solutions.

An large open question

 when $\lambda_{1} \leq \lambda_{2}$ and $\mu_{1} \geq \beta \geq \mu_{2}$ and either $\mu_{1}>\mu_{2}$ or $\lambda_{1}<\lambda_{2}$, does system (2) have nontrivial solutions? So far, this question is completely unknown. Clearly, if exists, they must be sign-changing or semi-nodal.
Main difficulty

(1) Problem (2) has infinitely many semi-trivial solutions ($u_{1, n}, 0$) and $\left(0, u_{2, n}\right)$, where $u_{i, n}$ are sign-changing solutions of the scalar equation $-\Delta u+\lambda_{i} u=\mu_{i} u^{3}$. We have to eliminate all these solutions when seeking sign-changing solutions.
(2) In the case $\beta<-\sqrt{\mu_{1} \mu_{2}}$, we already know that problem (2) may
have infinitely many positive solutions $\left(u_{1, n}, U_{2, n}\right)$ (see
Dancer-Wei-Weth(ANIHPC2009) for example). We also have to
eliminate all these solutions when seeking sign-changing
solutions.
(3) We need to give a proper variational framework to overcome
these difficulties.

Main difficulty

(1) Problem (2) has infinitely many semi-trivial solutions ($u_{1, n}, 0$) and $\left(0, u_{2, n}\right)$, where $u_{i, n}$ are sign-changing solutions of the scalar equation $-\Delta u+\lambda_{i} u=\mu_{i} u^{3}$. We have to eliminate all these solutions when seeking sign-changing solutions.
(2) In the case $\beta<-\sqrt{\mu_{1} \mu_{2}}$, we already know that problem (2) may have infinitely many positive solutions ($u_{1, n}, u_{2, n}$) (see Dancer-Wei-Weth(ANIHPC2009) for example). We also have to eliminate all these solutions when seeking sign-changing solutions.
(3) We need to give a proper variational framework to overcome these difficulties.

Main difficulty

(1) Problem (2) has infinitely many semi-trivial solutions ($u_{1, n}, 0$) and $\left(0, u_{2, n}\right)$, where $u_{i, n}$ are sign-changing solutions of the scalar equation $-\Delta u+\lambda_{i} u=\mu_{i} u^{3}$. We have to eliminate all these solutions when seeking sign-changing solutions.
(2) In the case $\beta<-\sqrt{\mu_{1} \mu_{2}}$, we already know that problem (2) may have infinitely many positive solutions ($u_{1, n}, u_{2, n}$) (see Dancer-Wei-Weth(ANIHPC2009) for example). We also have to eliminate all these solutions when seeking sign-changing solutions.
(3) We need to give a proper variational framework to overcome these difficulties.

Main ideas

(1) Our proof is mainly inspired by Tavares and Terracini (ANIHPC2012), where a new notion of vector genus introduced by them will be used to define appropriate minimax values.
> (2) To obtain nontrivial solutions of (2), the first step is turning to study a new problem J with two constraints. seems new to problem (2), is crucial in our proof. Then we define a sequence of minimax values of J by using vector genus. Here, in order to obtain sign-changing solutions, we also need to use cones of positive/negative functions as in some previous papers (such as Conti, Merizzi and Terracini (NoDEA1999)), by which, these minimax values are actually sign-changing critical values.

Main ideas

(1) Our proof is mainly inspired by Tavares and Terracini (ANIHPC2012), where a new notion of vector genus introduced by them will be used to define appropriate minimax values.
(2) To obtain nontrivial solutions of (2), the first step is turning to study a new problem J with two constraints. This idea, which seems new to problem (2), is crucial in our proof. Then we define a sequence of minimax values of J by using vector genus. Here, in order to obtain sign-changing solutions, we also need to use cones of positive/negative functions as in some previous papers (such as Conti, Merizzi and Terracini (NoDEA1999)), by which, these minimax values are actually sign-changing critical values.

Previous ideas

The energy functional $E: H:=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$

$$
E\left(u_{1}, u_{2}\right)=\sum_{i=1}^{2} \int_{\Omega}\left[\frac{1}{2}\left(\left|\nabla u_{i}\right|^{2}+\lambda_{i} u_{i}^{2}\right)-\frac{\mu_{i}}{4} u_{i}^{4}\right]-\frac{\beta}{2} \int_{\Omega} u_{1}^{2} u_{2}^{2} .
$$

To obtain nontrivial solutions of (2), in many papers (see Lin-Wei (CMP2005) and Sirakov (CMP2007) for example), people usually turn to study nontrivial critical points of E under the following Nehari manifold type constraint
$\mathcal{N}:=\left\{\left(u_{1}, u_{2}\right) \in H: u_{i} \neq 0, E^{\prime}\left(u_{1}, u_{2}\right)\left(u_{1}, 0\right)=E^{\prime}\left(u_{1}, u_{2}\right)\left(0, u_{2}\right)=0\right\}$.
Clearly, all nontrivial solutions belong to \mathcal{N}. Besides, all critical points of $\left.E\right|_{\mathcal{N}}$ are nontrivial solutions of (2), provided $\beta<\sqrt{\mu_{1} \mu_{2}}$.

New idea

Let $\beta<0$. Define a new functional $J: H \rightarrow \mathbb{R} \cup\{+\infty\}$ by

$$
\begin{aligned}
J\left(u_{1}, u_{2}\right) & :=\max _{t_{1}, t_{2}>0} E\left(t_{1} u_{1}, t_{2} u_{2}\right) \\
& =\frac{1}{4} \frac{\mu_{2}\left|u_{2}\right|_{4}^{4}\left\|u_{1}\right\|_{\lambda_{1}}^{4}+2|\beta|\left\|u_{1}\right\|_{\lambda_{1}}^{2}\left\|u_{2}\right\|_{\lambda_{2}}^{2} \int_{\Omega} u_{1}^{2} u_{2}^{2}+\mu_{1}\left|u_{1}\right|_{4}^{4}\left\|u_{2}\right\|_{\lambda_{2}}^{4}}{\left[\mu_{1} \mu_{2}\left|u_{1}\right|_{4}^{4}\left|u_{2}\right|_{4}^{4}-|\beta|^{2}\left(\int_{\Omega} u_{1}^{2} u_{2}^{2}\right)^{2}\right]_{+}} .
\end{aligned}
$$

Define a set with two constraints

$$
\mathcal{M}:=\left\{\left(u_{1}, u_{2}\right) \in H: \int_{\Omega}\left|u_{1}\right|^{4}=\int_{\Omega}\left|u_{2}\right|^{4}=1, \mu_{1} \mu_{2}-|\beta|^{2}\left(\int_{\Omega} u_{1}^{2} u_{2}^{2}\right)^{2}>0\right\} .
$$

The crucial observation: Clealy any critical point of $J_{\mathcal{M}}$ is not a solution of (2). However, it can turn to be a nontrivial solution under a proper transformation.

New idea

Precisely, let $\vec{u}=\left(u_{1}, u_{2}\right) \in \mathcal{M}$ be a critical point of $J_{\mathcal{M}}$, then there exists unique $t_{1}, t_{2}>0$ such that

$$
E\left(t_{1} u_{1}, t_{2} u_{2}\right)=\max _{s_{1}, s_{2}>0} E\left(s_{1} u_{1}, s_{2} u_{2}\right)=J\left(u_{1}, u_{2}\right) .
$$

Then $\left(t_{1} u_{1}, t_{2} u_{2}\right)$ is a nontrivial critical point of E and so a nontrivial solution of (2).

Hence, to obtain nontrivial solutions of (2), it suffices to study $J_{\mathcal{M}}$, a problem with two constraints. Somewhat surprisingly, up to our knowledge, this natural idea has never been used for (2) in the literature.

Cones of positive/negative functions

Define cones of positive/negative functions by

$$
\mathcal{P}_{i}:=\left\{\vec{u}=\left(u_{1}, u_{2}\right) \in H: u_{i} \geq 0\right\}, \quad \mathcal{P}:=\bigcup_{i=1}^{2}\left(\mathcal{P}_{i} \cup-\mathcal{P}_{i}\right)
$$

Define $\mathcal{P}_{\delta}:=\left\{\vec{u} \in H: \operatorname{dist}_{4}(\vec{u}, \mathcal{P})<\delta\right\}$ as neighborhoods of \mathcal{P}, where

$$
\begin{align*}
& \operatorname{dist}_{4}(\vec{u}, \mathcal{P}):=\min \left\{\operatorname{dist}_{4}\left(u_{i}, \mathcal{P}_{i}\right), \operatorname{dist}_{4}\left(u_{i},-\mathcal{P}_{i}\right), \quad i=1,2\right\}, \tag{8}\\
& \operatorname{dist}_{4}\left(u_{i}, \pm \mathcal{P}_{i}\right):=\inf \left\{\left|u_{i}-v\right|_{4}:=\left(\int_{\Omega}\left|u_{i}-v\right|^{4}\right)^{1 / 4}: v \in \pm \mathcal{P}_{i}\right\}
\end{align*}
$$

Denote $u^{ \pm}:=\max \{0, \pm u\}$, then $\operatorname{dist}_{4}\left(u_{i}, \mathcal{P}_{i}\right)=\left|u_{i}^{-}\right|_{4}$. That is, $\vec{u}=\left(u_{1}, u_{2}\right)$ satisfies $\operatorname{dist}_{4}(\vec{u}, \mathcal{P})>0$ if and only if both u_{1} and u_{2} change sign. Therefore, we will seek nontrivial solutions outside of the cone \mathcal{P}.

Vector genus

Define the transformations

$$
\sigma_{i}: H \rightarrow H \text { by } \sigma_{1}\left(u_{1}, u_{2}\right):=\left(-u_{1}, u_{2}\right), \sigma_{2}\left(u_{1}, u_{2}\right):=\left(u_{1},-u_{2}\right) .
$$

We consider the class of invariant sets

$$
\mathcal{F}=\left\{A \subset \mathcal{M}: A \text { is closed and } \sigma_{i}(\vec{u}) \in A \forall \vec{u} \in A, i=1,2\right\},
$$

and for any integers $k_{1}, k_{2} \geq 2$, we denote

$$
\Gamma^{\left(k_{1}, k_{2}\right)}:=\left\{A \in \mathcal{F}: \vec{\gamma}(A) \geq\left(k_{1}, k_{2}\right)\right\} .
$$

Here, the definition of vector genus $\vec{\gamma}$ is seen in Tavares and Terracini(ANIHPC2012).

Sign-changing minimax values

Lemma 1

For any $\delta<2^{-1 / 4}$ and any $A \in \Gamma^{\left(k_{1}, k_{2}\right)}$ there holds $A \backslash \mathcal{P}_{\delta} \neq \emptyset$.
Furthermore, there exist $A \in \Gamma^{\left(k_{1}, k_{2}\right)}$ such that $c^{k_{1}, k_{2}}:=\sup _{A} J<+\infty$.
For every $k_{1}, k_{2} \geq 2$ and $0<\delta<2^{-1 / 4}$, we define

$$
\begin{align*}
& c_{\delta}^{k_{1}, k_{2}}:=\inf _{A \in \Gamma_{0}^{\left(k_{1}, k_{2}\right)}} \sup _{\vec{u} \in A \backslash \mathcal{P}_{\delta}} J(\vec{u}), \quad \text { where } \tag{9}\\
& \Gamma_{0}^{\left(k_{1}, k_{2}\right)}:=\left\{A \in \Gamma^{\left(k_{1}, k_{2}\right)}: \sup _{A} J<c^{k_{1}, k_{2}}+1\right\} . \tag{10}
\end{align*}
$$

It suffices to prove that $c_{\delta}^{k_{1}, k_{2}}$ is a sign-changing critical value of $\left.J\right|_{\mathcal{M}}$ provided that $\delta>0$ is sufficiently small.

Remark

In order to prove that $c_{\delta}^{k_{1}, k_{2}}$ is a sign-changing critical value, we need to seek a decreasing deformation flow $\eta:[0,+\infty) \times \mathcal{M} \rightarrow \mathcal{M}$ such that for $\delta>0$ small enough,

$$
\eta(t, \vec{u}) \in \mathcal{P}_{\delta} \text { whenever } u \in \mathcal{M} \cap \mathcal{P}_{\delta}, J(u) \leq c^{k_{1}, k_{2}}+1, t>0
$$

This property is crucial to guarantee that $c_{\delta}^{k_{1}, k_{2}}$ is a sign-changing critical value. Remark that (11) may not hold without restriction $J(u) \leq c^{k_{1}, k_{2}}+1$ (a uniform bound). Hence, in the definition of $c_{\delta}^{k_{1}, k_{2}}$, it does not seem that we could replace $\Gamma_{0}^{\left(k_{1}, k_{2}\right)}$ either by $\Gamma^{\left(k_{1}, k_{2}\right)}$ or by $\widetilde{\Gamma}^{\left(k_{1}, k_{2}\right)}$, where

$$
\widetilde{\Gamma}^{\left(k_{1}, k_{2}\right)}:=\left\{A \in \Gamma^{\left(k_{1}, k_{2}\right)}: \sup _{A} J<+\infty\right\} .
$$

Least energy sign-changing solutions

Remark the first minimax value $c_{\delta}^{2,2}$ is precisely the least energy level that corresponds to the least energy sign-changing solutions. To see this, let us define

$$
\begin{aligned}
\tilde{c}:= & \inf _{\vec{u} \in \mathcal{S}} E(\vec{u}), \text { where } \\
\mathcal{S}:= & \left\{\vec{u}=\left(u_{1}, u_{2}\right) \in H: \text { both } u_{1} \text { and } u_{2}\right. \text { change sign, } \\
& \left.E^{\prime}(\vec{u})\left(u_{1}^{ \pm}, 0\right)=0, E^{\prime}(\vec{u})\left(0, u_{2}^{ \pm}\right)=0\right\} .
\end{aligned}
$$

Then any sign-changing solutions belong to \mathcal{S}. We can prove $\tilde{c}=c_{\delta}^{2,2}$, and so a sign-changing critical point of $c_{\delta}^{2,2}$ must be a least energy sign-changing solution.

Remark

By using minimizing skills, one can prove the existence of a minimizer $\left(u_{1}, u_{2}\right) \in \mathcal{S}$ such that $E\left(u_{1}, u_{2}\right)=\tilde{c}$ directly. However, it seems very difficult to prove that such a minimizer $\left(u_{1}, u_{2}\right)$ is critical point of E. For example, since the operators $u \in H_{0}^{1}(\Omega) \mapsto \int_{\Omega}\left|\nabla\left(u^{ \pm}\right)\right|^{2} d x$ are not C^{1}, the method of Lagrange multipliers, which is very powerful in obtaining least energy solutions, does not apply here; besides, since problem (2) is a system and \mathcal{S} has four constraints, previous ideas, which are used for scalar equations to obtain least energy sign-changing solutions, do not seem to work here either. Here we do not need to use minimizing skills.

Thank you for your attention!

