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The problem

Consider the following coupled Gross-Pitaevskii equations:
−i ∂∂t Φ1 = ∆Φ1 + µ1|Φ1|2Φ1 + β|Φ2|2Φ1, x ∈ Ω, t > 0,
−i ∂∂t Φ2 = ∆Φ2 + µ2|Φ2|2Φ2 + β|Φ1|2Φ2, x ∈ Ω, t > 0,
Φj = Φj (x , t) ∈ C, j = 1,2,
Φj (x , t) = 0, x ∈ ∂Ω, t > 0, j = 1,2,

(1)

where Ω = RN or Ω ⊂ RN is a smooth bounded domain, N ≤ 3,
i =
√
−1 is the imaginary unit, µ1, µ2 > 0 and β 6= 0 is a coupling

constant.
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Motivation from Physics

System (1) arises as mathematical models from several physical
problems, such as nonlinear optics and the Hartree-Fock theory
for a double condensate, i.e., a binary mixture of Bose-Einstein
condensates.

In physics, the sign of µj represents the self-interactions of the
single j-th component. If µj > 0 as considered here, it is called
the focusing case, in opposition to the defocusing case where
µj < 0.

The sign of β determines whether the interactions between the
two components are repulsive or attractive, i.e., the interaction is
attractive if β > 0, and the interaction is repulsive if β < 0.
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Solitary wave solutions

To obtain solitary wave solutions of the system (1), we set
Φj (x , t) = eiλj tuj (x) for j = 1,2. Then system (1) is reduced to
the following elliptic systemµ

−∆u1 + λ1u1 = µ1u3
1 + βu1u2

2 , x ∈ Ω,

−∆u2 + λ2u2 = µ2u3
2 + βu2

1u2, x ∈ Ω,

u1|∂Ω = u2|∂Ω = 0.
(2)

When Ω = RN , the Dirichlet boundary condition
u1|∂Ω = u2|∂Ω = 0 means

u1(x)→ 0 and u2(x)→ 0, as |x | → ∞,

and we assume λ1, λ2 > 0; When Ω is a smooth bounded
domain, we let λ1(Ω) be the first eigenvalue of −∆ in Ω with
Dirichlet boundary condition, and assume λ1, λ2 > −λ1(Ω).
Then operators −∆ + λj are positive definite.
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Different kinds of solutions

Definition

We call a solution (u1,u2) nontrivial if uj 6≡ 0 for j = 1,2, a solution
(u1,u2) semi-trivial if (u1,u2) is type of (u1,0) or (0,u2). A solution
(u1,u2) is called positive if uj > 0 in Ω for j = 1,2, a solution (u1,u2)
sign-changing if both u1 and u2 change sign, a solution semi-nodal if
one component is positive and the other one changes sign.

Remark

Problem (2) has two kinds of semi-trivial solutions (ω1,0) and (0, ω2),
where ωi are nontrivial solutions of the scalar equation

−∆u + λiu = µiu3, u ∈ H1
0 (Ω). (3)

We are only concerned with nontrivial solutions of problem (2). The
existence of infinitely many semi-trivial solutions makes the study of
nontrivial solutions rather complicated and delicate.
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A more general system

There is a more general k -coupled system (k ≥ 3), namely{
−∆uj + λjuj = µju3

j +
∑

i 6=j βiju2
i uj , in Ω,

uj |∂Ω = 0, j = 1, · · · , k .
(4)

Here βij = βji . In general, system (4) is more delicate than system (2).
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In the last decades, systems (2) and (4) (both in the focusing case
and defocusing case) have received ever-increasing interest and
have been studied intensively from many aspects, such as ground
state (or least energy) solutions, multiple solutions, a priori estimates,
asymptotic behaviors and phase seperations and so on. See papers
such as

Conti-Terracini-Verzini(ANIHPC2002, JFA2003), Chang-Lin-Lin-Lin(PhysD2004),
Lin-Wei(CMP2005, ANIHPC2005, JDE2006), Bartsch-Wang(JPDE2006),
Ambrosetti-Colorado(JLMS2007), Sirakov(CMP2007), Bartsch-Wang-Wei
(JFPTA-2007), Liu-Wang(CMP2008, ANS2010), Wei-Weth(ARMA2008,
Nonlinearity2008), Terracini-Verzini(ARMA2009), Dancer-Wei(TAMS2009),
Dancer-Wei-Weth(ANIHPC2010), Noris-Ramos(PAMS2010),
Bartsch-Dancer-Wang(CVPDE2010), Noris-Tavares-Terracini-Verzini(CPAM2010,
JEMS2012), Tavares-Terracini-Verzini-Weth(CPDE2011), Ikoma-Tanaka(CVPDE2011),
Tavares-Terracini(CVPDE2012, ANIHPC2012), Chen-Zou(ARMA2012, CVPDE2012),
Wei-Yao(CPAA2012), Dancer-Wang-Zhang(JFA2012), Quittner-Souplet(CMP2012),
Sato-Wang(ANIHPC2013),

· · · · · ·
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Multiple positive solutions under symmetric conditions

Symmetric conditions: λ1 = λ2 = λ and µ1 = µ2 = µ. Problem
(2) is invariant under (u, v) 7−→ (v ,u).

Dancer, Wei and Weth (ANIHPC2010) proved the existence of
infinitely many positive solutions of (2), provided β ≤ −µ. The
assumption β ≤ −µ is sharp due to a priori estimates for
β > −√µ1µ2:

‖u1‖L∞(Ω) + ‖u2‖L∞(Ω) ≤ C(β), for all positive solutions (u1,u2).

See also Quittner-Souplet(CMP2012) for a priori estimates
about more general k -coupled systems (such as k -coupled
system (4)).
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Multiple positive solutions under symmetric conditions

If Ω is a ball or RN (i.e., radially symmetric), infinitely many
positive radial solutions, whose profiles are closely related to
sign-changing solutions of the scalar equation −∆u + λu = µu3,
were also obtained. See Wei-Weth (ARMA2008) for sysem (2),
where they proved: Let Ω be a ball and give k ∈ N, then for each
β ≤ −µ, (2) has a positive radial solution (uβ , vβ) such that
uβ − vβ changes sign precisely k times. Moreover, letting
β → −∞, uβ →W + and vβ →W− in Hr (Ω) ∩ C(Ω), where
W± = max{0,±W} and W is a radial sign-changing solution of
−∆u + λu = µu3 which changes sign precisely k times.

See also Terracini-Verzini(ARMA2009) for more general results
for k -coupled system (4), and Bartsch-Dancer-Wang
(CVPDE2010) for sysem (2) without assumption µ1 = µ2 (An
idea of global bifurcation).
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An open question about Multiple positive solutions

An open question: For β ≤ −√µ1µ2, whether (2) has infinitely
many positive solutions without symmetric assumptions λ1 = λ2
or µ1 = µ2?

A recent progress: Guo and Wei(2013) give an positive answer
in the case where N = 2, Ω is a bounded domain and
µ1 = µ2 = µ, but without assumption λ1 = λ2. An idea of
perturbation:

−∆u1 + λu1 = µu3
1 + βu1u2

2 + εu1, x ∈ Ω,

−∆u2 + λu2 = µu3
2 + βu2

1u2 − εu2, x ∈ Ω,

u1|∂Ω = u2|∂Ω = 0.
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Multiple nontrivial solutions without symmetric
condition

If we do not assume symmetric conditions λ1 = λ2 or µ1 = µ2,
multiple nontrivial solutions can also be obtained.

Liu and Wang (CMP2008) obtained finite multiple nontrivial
solutions provided β > 0 small or large, i.e., given k ∈ N, there
exists 0 < βk < β′k such that (2) has at least k nontrivial
solutions for 0 < β < βk or β > β′k . Infinitely many nontrivial
solutions for β < 0 were also obtained by Liu and Wang
(ANS2010). No information about the sign of these solutions.

Sato and Wang (ANIHPC2013) obtained infinitely many
semi-positive solutions (i.e., at least one component is positive)
for β < 0 and finite multiple semi-positive solutions for β > 0
small or large. Whether the other component positive or
sign-changing is unknown.
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Multiple sign-changing or semi-nodal solutions

There are few results about the existence of sign-changing or
semi-nodal solutions to (2) in the literature.

When Ω = RN , radially symmetric sign-changing solutions with a
prescribed number of zeros were proved either for β > 0 large
(Maia-Montefusco-Pellacci (CCM2008)) or for β > 0 small
(Kim-Kwon-Lee (NA2013)), i.e., given h, k ∈ N ∪ {0}, there exist
0 < βhk < β′hk such that for 0 < β < βhk or β > β′hk , (2) has a
radially symmetric solution (u1,u2) with u1 changing sign
precisely h times and u2 changing sign precisely k times. Clearly
their methods can not be applied to obtain multiple
sign-changing solutions for the non-radial bounded domain case.
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Sign-changing solutions in the defocusing case µj < 0

Tavares and Terracini (ANIHPC2012) studied the following general
k -coupled system in the defocusing case{

−∆uj − µju3
j − βuj

∑
i 6=j u2

i = λjuj , in Ω,

uj ∈ H1
0 (Ω),

∫
Ω

u2
j dx = 1, j = 1, · · · , k ,

(5)

where Ω is a smooth bounded domain, and β < 0, µj ≤ 0 are all fixed
constants. They proved that there exist infinitely many
λ = (λ1, · · · , λk ) ∈ Rm and u = (u1, · · · ,uk ) ∈ H1

0 (Ω,Rm) such that
(u, λ) are sign-changing solutions of (5). That is, λj is not fixed a
priori but appears as a Lagrange multiplier. Therefore, problem (5) is
completely different from problem (2) we consider here, for which, we
deal with the focusing case µj > 0, and λj , µj , β are all fixed
constants.
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Natural questions

For problem (2), since the related functional is even both for u1 and
u2, it is natural to suspect that (2) may have sign-changing solutions.
So far, there are two natural questions about sign-changing solutions
which seem to be still open.

1 When β < 0, whether (2) has infinitely many sign-changing
solutions for both the entire space case and the bounded
domain case?

2 When β > 0, whether (2) has multiple sign-changing solutions
for the non-radial bounded domain case?

We can ask similar questions about semi-nodal solutions.
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The repulsive case β < 0: Sign-changing solutions

Theorem 1(C-Lin-Zou2012)
Let Ω ⊂ RN is a smooth bounded domain and β < 0. Then (2) has
infinitely many sign-changing solutions (un,1,un,2) such that

‖un,1‖L∞(Ω) + ‖un,2‖L∞(Ω) → +∞ as n→ +∞.
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The repulsive case β < 0: Sign-changing solutions

Definition
A nontrivial solution is called a least energy solution, if its functional
energy is minimal among all nontrivial solutions. A sign-changing
solution is called a least energy sign-changing solution, if its
functional energy is minimal among all sign-changing solutions.

For −∞ < β < β0 where β0 is a positive constant, Lin and Wei
(ANIHPC2005) proved that (2) has a least energy solution which turns
out to be a positive solution. See Sirakov (CMP2007) for large β.

Theorem 2(C-Lin-Zou2012)
Under the same assumptions in Theorem 1, problem (2) has a least
energy sign-changing solution (u1,u2). Moreover, both u1 and u2
have exactly two nodal domains.
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The repulsive case β < 0: Semi-nodal solutions

Theorem 3(C-Lin-Zou2012)
Under the same assumptions in Theorem 1, problem (2) has infinitely
many semi-nodal solutions {(un,1,un,2)}n≥2 such that

1 un,1 changes sign and un,2 is positive;

2 ‖un,1‖L∞(Ω) + ‖un,2‖L∞(Ω) → +∞ as n→ +∞;

3 un,1 has at most n nodal domains. In particular, u2,1 has exactly
two nodal domains, and (u2,1,u2,2) has the least functional
energy among all nontrivial solutions whose first component
changes sign.

France-Taiwan Joint Conference on Nonlinear PDE CASTS, National Taiwan University



Introduction of the problem
Main results

Main ideas of the proof

Remark
Similarly, we can prove that (2) has infinitely many semi-nodal
solutions {(vn,1, vn,2)}n≥2 such that vn,1 is positive, vn,2 changes sign
and has at most n nodal domains. In the symmetric case where
λ1 = λ2 and µ1 = µ2, (un,1,un,2) obtained in Theorem 3 and
(vn,1, vn,2) may be the same solution in the sense of un,1 = vn,2 and
un,2 = vn,1. However, if either λ1 6= λ2 or µ1 6= µ2, then (un,1,un,2) and
(vn,1, vn,2) are really different solutions.

Z. Chen, C.-S. Lin and W. Zou, Infinitely many sign-changing and
semi-nodal solutions for a nonlinear Schrödinger system, arXiv:
1212.3773v1 [math.AP].
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Consider the general k -coupled system (4){
−∆uj + λjuj = µju3

j +
∑

i 6=j βiju2
i uj , in Ω,

uj |∂Ω = 0, j = 1, · · · , k .

Remark
We did not consider this general k -coupled system in our paper.
However, by using the same ideas, in the repulsive case where βij < 0
for any i 6= j , similar results as the three theorems above hold for the
general k -system (4) with k ≥ 3. That is, for any fixed 1 ≤ m ≤ k , the
general k -coupled system has infinitely many nontrivial solutions
(u1,n, · · · ,um,n,um+1,n, · · · ,uk,n) with the first m components uj,n,
1 ≤ j ≤ m, sign-changing and the rest k −m components positive.
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The attractive case β > 0

The attractive case β > 0 is different from the repulsive case
β < 0, and here we can only obtain finite multiple solutions.

Theorem 4(C-Lin-Zou, JDE2013)
Let Ω ⊂ RN is a smooth bounded domain. Then for any k ∈ N there
exists βk > 0 such that for each fixed β ∈ (0, βk ), system (2) has at
least k sign-changing solutions and k semi-nodal solutions with the
first component sign-changing and the second component positive.

Theorem 5(C-Lin-Zou, JDE2013)
Let Ω ⊂ RN is a smooth bounded domain. Then there exists
β′1 ∈ (0, β1] such that system (2) has a least energy sign-changing
solution for each β ∈ (0, β′1).
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The entire space case Ω = RN

Remark

Theorems 1-5 are all stated in the bounded domain case. Let Ω = RN

with N = 2,3. Then by working in the radial function space
H1

r (RN) := {u ∈ H1(RN) : u is radially symmetric} and recalling the
compactness of H1

r (RN) ↪→ L4(RN), all the existence results above
also hold via the same proof. The main difference is that, in the case
Ω = RN , all sign-changing and semi-nodal solutions are radially
symmetric, and the least energy sign-changing solution is only in the
sense of having the least energy among all radially symmetric
sign-changing solutions.
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Remarks

Open problem 1

From results of Dancer, Wei and Weth(ANIHPC2010), the sharp
range is (−∞,−√µ1µ2) when seeking infinitely many positive
solutions. However, we do not know what is the sharp range of β
when seeking infinitely many sign-changing or semi-nodal solutions.
This seems to be a challenging open problem since, in general, we
can not obtain a priori estimates for sign-changing and semi-nodal
solutions.

Open problem 2

For the non-radial bounded domain case, we can only obtain multiple
sign-changing and semi-nodal solutions for β > 0 small. Whether
sign-changing or semi-nodal solutions exist or not for β > 0 large
remains open. Different ideas are needed, since from the next result,
we know that our method does not work for all β > 0.
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An nonexistence result of semi-nodal solutions

Theorem 6
Let N ≤ 3 and (u1,u2) be a nontrivial solution of

−∆u1 + λu1 = µu3
1 + µu1u2

2 , x ∈ RN ,

−∆u2 + λu2 = µu3
2 + µu2

1u2, x ∈ RN ,

u1,u2 ∈ H1(RN)

(6)

with u1 > 0. Then u2 = Cu1 for some constant C 6= 0. In particular,
(6) has no semi-nodal solutions.

Remark
When N = 1 and u1,u2 are both positive, this result u2 = Cu1 has
been proved by Wei and Yao (CPAA2012).
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An open question

Since ∫
Ω

u1u2
[
(λ2 − λ1) + (µ1 − β)u2

1 + (β − µ2)u2
2
]

dx = 0,

when λ1 ≤ λ2 and µ1 ≥ β ≥ µ2 and either µ1 > µ2 or λ1 < λ2, system
(2) has no nontrivial positive solutions.

An large open question

when λ1 ≤ λ2 and µ1 ≥ β ≥ µ2 and either µ1 > µ2 or λ1 < λ2, does
system (2) have nontrivial solutions? So far, this question is
completely unknown. Clearly, if exists, they must be sign-changing or
semi-nodal.
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Main difficulty

1 Problem (2) has infinitely many semi-trivial solutions (u1,n,0) and
(0,u2,n), where ui,n are sign-changing solutions of the scalar
equation −∆u + λiu = µiu3. We have to eliminate all these
solutions when seeking sign-changing solutions.

2 In the case β < −√µ1µ2, we already know that problem (2) may
have infinitely many positive solutions (u1,n,u2,n) (see
Dancer-Wei-Weth(ANIHPC2009) for example). We also have to
eliminate all these solutions when seeking sign-changing
solutions.

3 We need to give a proper variational framework to overcome
these difficulties.
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Main ideas

1 Our proof is mainly inspired by Tavares and Terracini
(ANIHPC2012), where a new notion of vector genus introduced
by them will be used to define appropriate minimax values.

2 To obtain nontrivial solutions of (2), the first step is turning to
study a new problem J with two constraints. This idea, which
seems new to problem (2), is crucial in our proof. Then we define
a sequence of minimax values of J by using vector genus. Here,
in order to obtain sign-changing solutions, we also need to use
cones of positive/negative functions as in some previous papers
(such as Conti, Merizzi and Terracini (NoDEA1999)), by which,
these minimax values are actually sign-changing critical values.
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Previous ideas

The energy functional E : H := H1
0 (Ω)× H1

0 (Ω)→ R

E(u1, u2) =
2∑

i=1

∫
Ω

[
1
2

(|∇ui |2 + λi u2
i )−

µi

4
u4

i

]
−
β

2

∫
Ω

u2
1u2

2 .

To obtain nontrivial solutions of (2), in many papers (see Lin-Wei
(CMP2005) and Sirakov (CMP2007) for example), people usually turn
to study nontrivial critical points of E under the following Nehari
manifold type constraint

N :=
{

(u1,u2) ∈ H : ui 6= 0,E ′(u1,u2)(u1,0) = E ′(u1,u2)(0,u2) = 0
}
.

Clearly, all nontrivial solutions belong to N . Besides, all critical points
of E |N are nontrivial solutions of (2), provided β <

√
µ1µ2.
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New idea

Let β < 0. Define a new functional J : H → R ∪ {+∞} by

J(u1, u2) := max
t1,t2>0

E(t1u1, t2u2)

=
1
4

µ2|u2|44‖u1‖4
λ1

+ 2|β|‖u1‖2
λ1
‖u2‖2

λ2

∫
Ω u2

1u2
2 + µ1|u1|44‖u2‖4

λ2

[µ1µ2|u1|44|u2|44 − |β|2(
∫

Ω u2
1u2

2)2]+
.

Define a set with two constraints

M :=

{
(u1, u2) ∈ H :

∫
Ω
|u1|4 =

∫
Ω
|u2|4 = 1, µ1µ2 − |β|2

(∫
Ω

u2
1u2

2

)2
> 0

}
.

The crucial observation: Clealy any critical point of J|M is not a
solution of (2). However, it can turn to be a nontrivial solution under a
proper transformation.
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New idea

Precisely, let ~u = (u1,u2) ∈M be a critical point of J|M, then there
exists unique t1, t2 > 0 such that

E(t1u1, t2u2) = max
s1,s2>0

E(s1u1, s2u2) = J(u1,u2).

Then (t1u1, t2u2) is a nontrivial critical point of E and so a nontrivial
solution of (2).

Hence, to obtain nontrivial solutions of (2), it suffices to study J|M, a
problem with two constraints. Somewhat surprisingly, up to our
knowledge, this natural idea has never been used for (2) in the
literature.
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Cones of positive/negative functions

Define cones of positive/negative functions by

Pi := {~u = (u1,u2) ∈ H : ui ≥ 0}, P :=
2⋃

i=1

(Pi ∪ −Pi ). (7)

Define Pδ := {~u ∈ H : dist4(~u,P) < δ} as neighborhoods of P, where

dist4(~u,P) := min
{

dist4(ui , Pi ), dist4(ui , −Pi ), i = 1,2
}
, (8)

dist4(ui , ±Pi ) := inf

{
|ui − v |4 :=

(∫
Ω

|ui − v |4
)1/4

: v ∈ ±Pi

}
.

Denote u± := max{0,±u}, then dist4(ui ,Pi ) = |u−i |4. That is,
~u = (u1,u2) satisfies dist4(~u,P) > 0 if and only if both u1 and u2
change sign. Therefore, we will seek nontrivial solutions outside of
the cone P.
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Vector genus

Define the transformations

σi : H → H by σ1(u1,u2) := (−u1,u2), σ2(u1,u2) := (u1,−u2).

We consider the class of invariant sets

F = {A ⊂M : A is closed and σi (~u) ∈ A ∀~u ∈ A, i = 1,2},

and for any integers k1, k2 ≥ 2, we denote

Γ(k1,k2) := {A ∈ F : ~γ(A) ≥ (k1, k2)}.

Here, the definition of vector genus ~γ is seen in Tavares and
Terracini(ANIHPC2012).
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Sign-changing minimax values

Lemma 1

For any δ < 2−1/4 and any A ∈ Γ(k1,k2) there holds A \ Pδ 6= ∅.
Furthermore, there exist A ∈ Γ(k1,k2) such that ck1,k2 := supA J < +∞.

For every k1, k2 ≥ 2 and 0 < δ < 2−1/4, we define

ck1,k2
δ := inf

A∈Γ
(k1,k2)

0

sup
~u∈A\Pδ

J(~u), where (9)

Γ
(k1,k2)
0 :=

{
A ∈ Γ(k1,k2) : sup

A
J < ck1,k2 + 1

}
. (10)

It suffices to prove that ck1,k2
δ is a sign-changing critical value of J|M

provided that δ > 0 is sufficiently small.
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Remark

In order to prove that ck1,k2
δ is a sign-changing critical value, we need

to seek a decreasing deformation flow η : [0,+∞)×M→M such
that for δ > 0 small enough,

η(t , ~u) ∈ Pδ whenever u ∈M∩Pδ, J(u) ≤ ck1,k2 + 1, t > 0. (11)

This property is crucial to guarantee that ck1,k2
δ is a sign-changing

critical value. Remark that (11) may not hold without restriction
J(u) ≤ ck1,k2 + 1 (a uniform bound). Hence, in the definition of ck1,k2

δ , it
does not seem that we could replace Γ

(k1,k2)
0 either by Γ(k1,k2) or by

Γ̃(k1,k2), where

Γ̃(k1,k2) :=

{
A ∈ Γ(k1,k2) : sup

A
J < +∞

}
.

France-Taiwan Joint Conference on Nonlinear PDE CASTS, National Taiwan University



Introduction of the problem
Main results

Main ideas of the proof

Least energy sign-changing solutions

Remark the first minimax value c2,2
δ is precisely the least energy level

that corresponds to the least energy sign-changing solutions. To see
this, let us define

c̃ := inf
~u∈S

E(~u), where

S :=
{
~u = (u1,u2) ∈ H : both u1 and u2 change sign,

E ′(~u)(u±1 ,0) = 0, E ′(~u)(0,u±2 ) = 0
}
.

Then any sign-changing solutions belong to S. We can prove
c̃ = c2,2

δ , and so a sign-changing critical point of c2,2
δ must be a least

energy sign-changing solution.
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Remark

By using minimizing skills, one can prove the existence of a minimizer
(u1,u2) ∈ S such that E(u1,u2) = c̃ directly. However, it seems very
difficult to prove that such a minimizer (u1,u2) is critical point of E .
For example, since the operators u ∈ H1

0 (Ω) 7→
∫

Ω
|∇(u±)|2 dx are not

C1, the method of Lagrange multipliers, which is very powerful in
obtaining least energy solutions, does not apply here; besides, since
problem (2) is a system and S has four constraints, previous ideas,
which are used for scalar equations to obtain least energy
sign-changing solutions, do not seem to work here either. Here we do
not need to use minimizing skills.
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Thank you for your
attention!
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