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Chern-Simons-Higgs (CSH) model

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

• T : flat 2-torus.

• pj : the vortex point.

• mj ∈ N: the mass of vortex point.

• δp : the Dirac measure concentrated at p
(δp(x) = 0 if x 6= p,

∫
T ψ(x)δp(x)dx = ψ(p)).

• ε > 0 : the coupling constant.

• [J. Hong, Y. Kim, P.Y. Pac/ R. Jackiw, E.J. Weinberg (1990)]:
-(CSH) describes vortices in high temperature superconductivity.



Chern-Simons-Higgs (CSH) model

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

• uε(x) = 2mj ln |x − pj |+ O(1), x → pj .

• limx→pj uε(x) = −∞.

• uε < 0 by the maximum principle.

•
∫
T

1
ε2 e

uε(1− euε)dx =
∫
T

1
ε2 |euε(1− euε)|dx = 4π

∑d
j=1 mj .



Chern-Simons-Higgs (CSH) model

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

Theorem (L.A. Caffarelli, Y.S. Yang(1995))

∃ε∗ > 0 such that @ solution for ε > ε∗,

∃ solution for ε ∈ (0, ε∗)−monotone scheme method.



Chern-Simons-Higgs (CSH) model

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

Theorem (K. Choe, N. Kim (2008): Brezis-Merle type alternatives)

One of the following holds true:

(i) limε→0

(
supK |uε|

)
= 0, ∀K b T \ {p1, ..., pd};

(ii) ∃ a finite blow up points set S 6= ∅ ⊆ T such that

1

ε2
euε(1− euε)→

∑
p∈S

αpδp, αp ≥ 8π;

(iii) uε − 2 ln ε is uniformly bounded in L∞loc(T \ {p1, ..., pd}).

• [K. Choe/ M. Nolasco, G. Tarantello/ C.-S. Lin, S. Yan...]:
study on blow up (bubbling) solutions.

• The other developments...



Uniqueness of topological solutions

Theorem (G. Tarantello (2007))

For small ε > 0, ∃! topological solution of

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

• uε is called a topological solution if uε → 0 a.e. in T as ε→ 0.

• uε is called a stable solution if the linearized equation of (CSH) at uε has
nonnegative eigenvalues.

• A key point for proof: topological solution ⇒ strictly stable solution.

• Question: Is the converse also true?

Yes, [D. Bartolucci, L., C.-S. Lin, M. Onodera]:
stable solution ⇔ topological solution.
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Entire solution of (CSH) in R2

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

• By considering the scaled function uε(ε ·+q) for q ∈ T, ∆u + eu(1− eu) = 4πνδ0 in R2, ν ∈ N;

eu(1− eu) ∈ L1(R2).

1) topological solution: lim|x|→+∞ u(x) = 0,

2) nontopological solution: lim|x|→+∞ u(x) = −∞.



Radially symmetric entire solutions of (CSH) in R2

• Let u = u(r ; s) be the unique solution of u′′ + 1
r u
′ + eu(1− eu) = 0, 0 < r <∞, (CSH)

u(r) = 2m ln r + s + o(1) as r → 0.

• ϕ̂(r) ≡ ∂u(r ;s)
∂s , f̂ (u) ≡ eu(1− eu).

• ϕ̂ = ∂u(·;s)
∂s satisfies the linearized equation of (CSH) at u(r ; s): ϕ̂′′ + 1

r ϕ̂
′ + f̂ ′(u)ϕ̂ = 0,

ϕ̂(0) = 1.



Radially symmetric entire solutions of (CSH) in R2

• ϕ̂′′ + 1
r ϕ̂
′ + f̂ ′(u)ϕ̂ = (rϕ̂′)′

r + f̂ ′(u)ϕ̂ = 0, ϕ̂(0) = 1.

• ϕ̂(r) ≡ ∂u(r ;s)
∂s , f̂ (u) ≡ eu(1− eu), β̂(s) ≡

∫∞
0

f̂ (u(r ; s))rdr .

• β̂′(s) =
∫∞

0
f̂ ′(u)∂u(r ;s)

∂s rdr =
∫∞

0
f̂ ′(u)ϕ̂rdr = − limr→+∞ r ϕ̂′(r).

• β̂′(s) = 0 ⇔ ϕ̂ is bounded in R2.

• If the linearized equation at u(r ; s) is non-degenerate, then β̂′(s) 6= 0.



Stable entire solutions of (CSH)

• ϕ̂′′ + 1
r ϕ̂
′ + f̂ ′(u)ϕ̂ = (rϕ̂′)′

r + f̂ ′(u)ϕ̂ = 0, ϕ̂(0) = 1.

• ϕ̂(r) ≡ ∂u(r ;s)
∂s , f̂ (u) ≡ eu(1− eu), β̂(s) ≡

∫∞
0

f̂ (u(r ; s))rdr .

• β̂′(s) =
∫∞

0
f̂ ′(u)∂u(r ;s)

∂s rdr =
∫∞

0
f̂ ′(u)ϕ̂rdr = − limr→+∞ r ϕ̂′(r).

• The sign of β̂′(s) is related to the stability of u(r ; s) (β̂′(s) > 0: unstable).

• u is called a stable entire solution of (CSH),

if the linearized equation of (CSH) at u has only nonnegative eigenvalues in any
compact subset of R2.



Stable entire solutions of (CSH)

• [H. Chan, C.-C. Fu, C.-S. Lin, (2002)]:

On {s |u(r ; s) is a non-topological solution of (CHS)}, β̂′(s) > 0 (unstable).

• Any non-topological radially symmetric entire solution of (CSH) is unstable.

• [D. Bartolucci, L., C.-S. Lin, M. Onodera]:

1) Any non-topological entire solution (including non-radially symmetric) of
(CSH) is unstable.

2) Stable entire solution of (CSH) in R2

⇔ topological solution, lim|x|→+∞ u(x) = 0.

3) Stable solution of (CSH) on a torus
⇔ topological solution, uε → 0 a.e. in T as ε→ 0.



Our main equation

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1)).

• CP(1) model describes the planar ferromagnet and has rich vacuum and soliton
structure.

• τ ∈ (0,∞), mj,i ∈ N.

• Z ≡ {pj,i ∈ T | 1 ≤ j ≤ di and i = 1, 2} : the set of vortex points.

• Zi ≡ {pj,i ∈ T | 1 ≤ j ≤ di } 6= ∅.

• Ni ≡
∑di

j=1 mj,i for i = 1, 2, N ≡ N1 − N2.



Our main equation

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1)).

• uε(x) = 2mj,1 ln |x − pj,1|+ O(1), x → pj , 1.

• uε(x) = −2mj,2 ln |x − pj,2|+ O(1), x → pj , 2.

• limx→pj,1 uε(x) = −∞, limx→pj,2 uε(x) = +∞.

• uε and euε (1−euε )
(τ+euε )3 change sign.

•
∫
T

1
ε2

euε (1−euε )
(τ+euε )3 dx = 4πN = 4π(N1 − N2).

•
∫
T

∣∣∣ 1
ε2

euε (1−euε )
(τ+euε )3

∣∣∣dx < C for some constant C > 0.



Our main equation

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1)).

• uε(x) = 2mj,1 ln |x − pj,1|+ O(1), x → pj , 1.

• uε(x) = −2mj,2 ln |x − pj,2|+ O(1), x → pj , 2.

• limx→pj,1 uε(x) = −∞, limx→pj,2 uε(x) = +∞.

• uε and euε (1−euε )
(τ+euε )3 change sign.

•
∫
T

1
ε2

euε (1−euε )
(τ+euε )3 dx = 4πN = 4π(N1 − N2).

•
∫
T

∣∣∣ 1
ε2

euε (1−euε )
(τ+euε )3

∣∣∣dx < C for some constant C > 0.



Our main equation

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1)).

• The behavior of a topological solution of (CP(1)) is similar to (CSH):

topological solution ⇒ strictly stable solution.

• Question: stable solution ⇔ topological solution ?



Entire solution of (CP(1)) in R2

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1)).

• By considering the scaled function uε(ε ·+q) for q ∈ T,
∆u + eu(1−eu)

(τ+eu)3 = 4πνδ0 in R2, ν ∈ Z;

eu(1−eu)
(τ+eu)3 ∈ L1(R2).

1) topological solution: lim|x|→+∞ u(x) = 0,

2) nontopological solution of type I: lim|x|→+∞ u(x) = −∞,

3) nontopological solution of type II: lim|x|→+∞ u(x) = +∞.



Radially symmetric entire solution of (CP(1)) in R2

Let u = u(r ; s) be the unique solution of u′′ + 1
r u
′ + eu(1−eu)

(τ+eu)3 = 0, 0 < r <∞, (CP(1))

u(r) = −2m ln r + s + o(1) as r → 0.

• ϕ(r) ≡ ∂u(r ;s)
∂s , f (u) ≡ eu(1−eu)

(τ+eu)3 , β(s) ≡
∫∞

0
f (u(r ; s))rdr .

• ϕ′′ + 1
r ϕ
′ + f ′(u)ϕ = (rϕ′)′

r + f ′(u)ϕ̂ = 0, ϕ(0) = 1.

• β′(s) =
∫∞

0
f ′(u)∂u(r ;s)

∂s rdr =
∫∞

0
f ′(u)ϕrdr = − limr→+∞ rϕ′(r).

• The sign of β′(s) is related to the stability of u(r ; s) (β′(s) > 0: unstable).



Radially symmetric entire solution of (CP(1)) in R2

• For nontopological solution of (CSH), β′(s) > 0 (unstable).

Theorem (K. Choe, J. Han, C.-S. Lin, T.-C. Lin)

(a) If m = 0, then β′(s) > 0 for ∀s ∈ R\{0}.

(b) If m ≥ 1, then ∃s∗ such that β′ > 0 on (s∗,+∞).

(b-1) If m = 1 or τ ≤ 1, then β′(s) > 0, ∀s ∈ R\{s∗}.

(b-2) If m > 1, then ∃ τ∗ > 1 such that {s < s∗ | β′(s) < 0} 6= ∅.

• (b-2) makes a difference between (CSH) and (CP(1)).



Stable entire solutions of CP(1)

• β′(s) < 0: stable.

Theorem (K. Choe, J. Han, C.-S. Lin, T.-C. Lin)

(b-2) If m > 1, then ∃ τ∗ > 1 such that {s < s∗ | β′(s) < 0} 6= ∅.


∆u + eu(1−eu)

(τ+eu)3 = −4πmδ0 on R2 (CP(1)),

u(x) = (−2m − 2N) ln |x |+ O(1) as |x | → +∞,

−2m − 2N < −2.

• If m > 1 and τ � 1, a non-topological stable entire solution of (CP(1)) might
exist.

• Question: Is there a stable bubbling solutions of (CP(1)) on a torus whenever
mj,i > 1 for some i , j?

No, there exists a global condition which allows mj,i > 1 for some i , j for the
non-existence result of stable bubbling solutions of (CP(1)) on a torus.
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Stable solutions and topological solutions on a torus

Theorem (D. Bartolucci, L., C.-S. Lin, M. Onodera)

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1))

(i) topological solution =⇒ strictly stable solution.

(ii) Assume

(H1) N1 6= N2,

(H2) either τ = 1, or

if N1 > N2, then mj,1 ∈ [0, 1] for ∀j , or

if N2 > N1, then mj,2 ∈ [0, 1] for ∀j .
Then, stable solution =⇒ topological solution.

• Non-existence result of stable bubbling solutions of (CP(1)) under a global
condition (H2) which allows mj,i > 1 for some i , j .

• Question: Is the condition (H2) is necessary?

Yes, we will construct a stable bubbling solution when (H2) does not hold.
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Then, stable solution =⇒ topological solution.

• Non-existence result of stable bubbling solutions of (CP(1)) under a global
condition (H2) which allows mj,i > 1 for some i , j .

• Question: Is the condition (H2) is necessary?
Yes, we will construct a stable bubbling solution when (H2) does not hold.



Main Goal

∆uε +
1

ε2

euε(1− euε)

(τ + euε)3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T (CP(1))

Our main goal is to investigate asymptotic behavior of various bubbling solutions
of (CP(1)) on a torus.

• Morse index = 0 : stable solutions,

• Morse index = 1 : mountain pass solutions,

• Solutions which blow up at one point.
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Main Theorem III: construction of (unstable) solutions blowing up at one point



Main Theorem I: construction of stable bubbling solutions

• (H3) m1,2 > 1, 1−m1,2 < N = N1 − N2 < 0.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let N1 < N2, mj,2 = 1 for j 6= 1, (H3) hold.

Assume ∃ a non-degenerate stable entire solution u of (CP(1)) for some τ � 1.

Then, ∃ stable solutions uε of (CP(1)) on a torus which blows up at p1,2 ∈ Z2.

• (H2) says that if N1 < N2, then mj,2 ∈ [0, 1] for ∀j .
Thus, (H3) is an example which does not satisfy (H2).

• (H2) is a (necessary) condition for non-existence result of stable bubbling
solutions of (CP(1)) on a torus.



Main Theorem I: construction of stable bubbling solutions

• (H3) m1,2 > 1, 1−m1,2 < N = N1 − N2 < 0.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let N1 < N2, mj,2 = 1 for j 6= 1, (H3) hold.

Assume ∃ a non-degenerate stable entire solution u of (CP(1)) for some τ � 1.

Then, ∃ stable solutions uε of (CP(1)) on a torus which blows up at p1,2 ∈ Z2.

• [K. Choe, J. Han, C.-S. Lin, T.-C. Lin]:
Under (H3), there might exist a non-degenerate stable entire solution u of
(CP(1)) for some τ > 1.

• Idea of proof: the argument of [H. Chan, C.-C. Fu, C.-S. Lin, (2002)] and [C.-S.
Lin, S. Yan (2010)].



Outline

History

Main Theorem I: construction of stable bubbling solutions

Main Theorem II: asymptotic behavior of mountain pass solutions

Main Theorem III: construction of (unstable) solutions blowing up at one point



Mountain pass solutions of (CSH)

Theorem (K. Choe (2007))

Let uε be mountain pass solutions of

∆uε +
1

ε2
euε(1− euε) = 4π

d∑
j=1

mjδpj on T (CSH).

If N̂ ≡
∑d

j=1 mj > 2, uε blows up at a maximum point of û0.

• û0 is the unique solution of

∆û0 = −4πN̂

|T|
+ 4π

d∑
j=1

mjδpj on T,
∫
T
û0dx = 0. on T (CSH).

• Question: What is an asymptotic behavior of mountain pass solutions of CP(1)
model?



Existence of mountain pass solutions of (CP(1))

• ∆u + 1
ε2

eu(1−eu)
(τ+eu)3 = 4π

∑d1

j=1 mj,1δpj,1 − 4π
∑d2

j=1 mj,2δpj,2 on T (CP(1)).

• ∆u0 = − 4πN
|T| + 4π

∑d1

j=1 mj,1δpj,1 − 4π
∑d2

j=1 mj,2δpj,2 ,
∫
T u0dx = 0.

• Letting v = u − u0, we can rewrite (CP(1)) as

∆v +
1

ε2

eu0+v (1− eu0+v )

(τ + eu0+v )3
=

4πN

|T|
on T (CP(1)R).

• v ∈W 1,2(T) satisfies (CP(1)R) if and only if
it is a critical point of the associated functional

Iε(v) ≡
∫
T

(1

2
|∇v |2 − eu0+v ((1− τ)eu0+v + 2τ)

2ε2τ 2(τ + eu0+v )2
+

4πNv

|T|

)
dx .



Existence of mountain pass solutions of (CP(1))

• [D. Chae, H.S. Nam, (1999)]:
v1,ε ≡ u1,ε − u0, where u1,ε is the topological (stable) solution of (CP(1)).

• Pε ≡ {ζ ∈ C 0([0, 1],W 1,2(T)) | ζ(0) = v1,ε, ζ(1) = C ε},
where C ε ∈ R and Iε(C ε) < Iε(v1,ε).

• If N 6= 0, then Iε satisfies the Palais-Smale condition.

∴ ∃ a mountain pass solution uε = v∗ε + u0 of (CP(1)) such that

Iε(v
∗
ε ) = inf

ζ∈Pε

sup
t∈[0,1]

Iε(ζ(t)).



Main Theorem II: mountain pass solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume τ = 1 and N 6= 0.

Let uε be mountain pass solutions of (CP(1)).

Then,

(i) uε blows up at one point p ∈ Z.

(ii) p ∈ Z1 if and only if N2 > N1.

• To prove this theorem, we need to understand the asymptotic behavior of
solutions of (CP(1)) on T in detail.



The asymptotic behavior of solutions of (CP(1))

Theorem (D. Bartolucci, L., C.-S. Lin, M. Onodera)

Let uε be solutions of (CP(1)) on a torus.

One of the following holds true:

(a) limε→0

(
supK |uε|

)
= 0, ∀K b T \ Z;

(b) limε→0

(
supK uε

)
< 0, ∀K b T \ Z2;

(c) limε→0

(
infK uε

)
> 0, ∀K b T \ Z1.

• We need to improve the above theorem to show the asymptotic behavior of
mountain pass solutions uε of (CP(1)).

• ∆u + eu(1−eu)
(τ+eu)3 = −

[
∆(−u) + e−u(1−e−u)

τ 3(τ−1+e−u)3

]
.

• If uε is a solution of (CP(1)), then −uε is a solution of a similar equation.
Thus it is enough to assume that uε satisfies (b).



The detail of asymptotic behavior of solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let uε be solutions of (CP(1)) satisfying

lim
ε→0

(
sup
K

uε
)
< 0, ∀K b T \ Z2.

Then, ∃ a finite blow up points set S ⊆ T \ Z2 such that

1

ε2

euε(1− euε)

(τ + euε)3
→

∑
p∈S∪Z2

αpδp.

• S can also be empty set.

• For (CSH) equation, the corresponding result was presented in [K. Choe, N.
Kim (2008)].



Comparison between (CP(1)) and (CSH)

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume mj,i ∈ N.
Let uε be solutions of (CP(1)) on a torus.
One of the following holds true:

(i) limε→0

(
supK |uε|

)
= 0, ∀K b T \ Z;

(ii) ∃ a finite blow up points set S ⊆ T \ Z.

Moreover, either limε→0

(
supK uε

)
< 0, or limε→0

(
infK uε

)
> 0 for ∀K b T \Z.

Theorem (K. Choe, N. Kim (2008))

Let uε be solutions of (CSH) on a torus.
One of the following holds true:

(i) limε→0

(
supK |uε|

)
= 0, ∀K b T \ Z;

(ii) ∃ a finite blow up points set S 6= ∅ ⊆ T;

(iii) uε − 2 ln ε is uniformly bounded in L∞loc(T \ Z ).



Remark of asymptotic behavior of solutions of (CP(1))

Remark
Since we assume mj,i ∈ N,

we could exclude the possibility uε − 2 ln ε is uniformly bounded in L∞loc(T \ Z ) for

(CP(1)).

If 0 ≤ mj,2 < 1 for ∀j , in [D. Bartolucci, L., C.-S. Lin, M. Onodera],

it was shown that it might happen that

uε − 2 ln ε is uniformly bounded in L∞loc(T \ Z ), converges to w in C 2
loc(T \ Z2),

∆w +
ew

τ 3
= 4π

d1∑
j=1

mj,1δpj,1 − 4π
d2∑
j=1

mj,2δpj,2 on T.



The detail of asymptotic behavior of solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let uε be solutions of (CP(1)) satisfying

lim
ε→0

(
sup
K

uε
)
< 0, ∀K b T \ Z2,

1

ε2

euε(1− euε)

(τ + euε)3
→

∑
p∈S∪Z2

αpδp.

Then,
(i) αp ≥ 8π if p ∈ S;

(ii) αp ≥ min{0, (4− 4mj,2)π} if p = pj,2 ∈ Z2;

(iii) if τ ∈ (0, 1], then αp ≥ 0 if p = pj,2 ∈ Z2.

• If τ ∈ (0, 1] or mj,2 = 1 for ∀j , then αp ≥ 0 for ∀p ∈ S ∪ Z2,

4π(N1 − N2) =
∫
T

1
ε2

euε (1−euε )
(τ+euε )3 dx →

∑
p∈S∪Z2

αp ≥ 0, N1 ≥ N2.



Main Theorem II: mountain pass solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let uε be solutions of (CP(1)) satisfying

lim
ε→0

(
sup
K

uε
)
< 0, ∀K b T \ Z2.

If τ ∈ (0, 1] or mj,2 = 1 for ∀j , then N1 ≥ N2.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume τ = 1 and N 6= 0.
Let uε be mountain pass solutions of (CP(1)).
Then,
(i) uε blows up at one point p ∈ Z.
(ii) p ∈ Z1 if and only if N2 > N1.

Remark
If N 6= 0, mj,i = 1, ∀i , j , then the result of the above theorem holds for any
τ ∈ (0,+∞).



Proof of asymptotic behavior of mountain pass solutions of
(CP(1))
• Idea of proof (N > 0):
1) An upper bound for Iε(v

∗
ε ):

By using a radially symmetric profile near pk,2, we construct a curve ζ = ζε ∈ Pε
such that

sup
t∈[0,1]

Iε(ζ(t, ·)) ≤ 4πN(N + 2mk,2) ln ε+ C as ε→ 0,

where mk,2 = max{mj,2 | 1 ≤ j ≤ d2}.

2) A lower bound for Iε(v
∗
ε ):

Estimate the value of Iε for all possible asymptotic behavior by using Green’s
representation formula.
Then

Iε(v
∗
ε ) ≥ 4πN

(
N + 2mk,2 + o(1)

)
ln ε as ε→ 0,

and the equality holds only if,

1

ε2

eu0+v∗ε (1− eu0+v∗ε )

(1 + eu0+v∗ε )3
→ 4πNδpk,2

. �
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Main Theorem III: construction of (unstable) solutions
blowing up at one point

• If ∃ solutions uε of (CP(1)) satisfying

1

ε2

euε(1− euε)

(τ + euε)3
→ 4πNδz0 in the sense of measure,

then the well-known Pohozaev-type identity implies that

z0 ∈ Z ∪ {x ∈ T | ∇u0(x) = 0}.

• Conversely, for z0 ∈ Z ∪ {x ∈ T | ∇u0(x) = 0},

we want to construct bubbling solutions which blows up at z0.



Construction of (unstable) solutions blowing up at one
point

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let τ > 0, N ≥ 1, mj,i = 1, ∀i , j . Assume
z0 ∈ Z ∪ {x ∈ T | ∇u0(x) = 0, det[D2u0](x) 6= 0} when N ≥ 5,

z0 ∈ Z2 ∪ {x ∈ T | ∇u0(x) = 0, det[D2u0](x) 6= 0} when N = 3, 4,

z0 ∈ Z2 when N = 1, 2.

Then, ∃ solutions uε of (CP(1)) which blow up at z0.

• Idea of proof: the argument of [H. Chan, C.-C. Fu, C.-S. Lin, (2002)] and [C.-S.
Lin, S. Yan (2010), (2013)]

• We only construct bubbling solutions from entire solutions of CP(1) equation,
but not the mean field equation.



Conclusions

On a torus,
• Stable solutions:

(CSH) stable solution ⇔ topological solution.

(CP(1)) ∃ stable bubbling solutions which blow up at p ∈ Z under some
conditions: τ > 1, N2 > N1, m1,2 > 1, p = p1,2 ∈ Z2.
-m1,2 = max{mj,2}.

• Mountain pass solutions:

(CSH) blows up at a maximum point of u0.

(CP(1)) blows up at p ∈ Z : τ = 1, N2 > N1 ⇔ p = p1,1 ∈ Z1.
-m1,1 = max{mj,1}.

• Solutions which blow up at one point p ∈ Z ∪ {x ∈ T | ∇u0(x) = 0}.

-Entire radially symmetric solutions.

-Green’s representation formula.

-Pohozaev-type identity ...
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Thank you for your attention!
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