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Chern-Simons-Higgs (CSH) model

d
1, u
Aue+ge5(1_es):47rz;mj5pj on T (CSH).
=

e T : flat 2-torus.
e p; : the vortex point.
e m; € N: the mass of vortex point.

® 0, : the Dirac measure concentrated at p

(0p(x) = 0if x # p, [ ¥(x)dp(x)dx = ¢(p)).

e ¢ > 0 : the coupling constant.

e [J. Hong, Y. Kim, P.Y. Pac/ R. Jackiw, E.J. Weinberg (1990)]:
-(CSH) describes vortices in high temperature superconductivity.



Chern-Simons-Higgs (CSH) model

d
1
Au. + ;26“5(1 —el) = 471'21 m;ép, on T (CSH).
=

o u.(x) =2mjlIn|x — pj| + O(1), x = p;.
o lim,,p u:(x) = —o0.
e u. < 0 by the maximum principle.

. fT s%eua(l —e')dx = f'[r s%|eu5(1 — el)|dx = 47TZJ('1=1 m;.



Chern-Simons-Higgs (CSH) model

d
1 u, u,
AU5 + 5\726 2(1 — e E) = 47Tz;mj(5pj on T (CSH).
j=

Theorem (L.A. Caffarelli, Y.S. Yang(1995))

de, > 0 such that

3 solution for e > e,
3 solution for e € (0,e.) — monotone scheme method.



Chern-Simons-Higgs (CSH) model

d
1
Au. + 1—e“)=4r> méy on T (CSH).
u =~ e’ ( els 0 m;ép, on ( )

Jj=1

Theorem (K. Choe, N. Kim (2008): Brezis-Merle type alternatives)

One of the following holds true:

() lime—so (supK |ua|) =0,YK € T\ {p1, ... pa};
(i) 3 a finite blow up points set S # () C T such that

1

62 e (1 —e") — Zapép, ap > 8m;

peS
(iii) us — 2Ine is uniformly bounded in Ly ('H‘ \{p1,.-s Pd})-

e [K. Choe/ M. Nolasco, G. Tarantello/ C.-S. Lin, S. Yan...]:
study on blow up (bubbling) solutions.

e The other developments...



Uniqueness of topological solutions

Theorem (G. Tarantello (2007))

For small e > 0, 3! topological solution of

d
1 u, u,
AU5+€_29 s(l—e E) :47rz;mj(5pj OnT (CSH).
j=

e u_ is called a topological solution if u. — 0 a.e. in T as e — 0.

e u. is called a stable solution if the linearized equation of (CSH) at u. has
nonnegative eigenvalues.

e A key point for proof: topological solution = strictly stable solution.

e Question: Is the converse also true?



Uniqueness of topological solutions

Theorem (G. Tarantello (2007))

For small e > 0, 3! topological solution of

d
1 u, u,
AU5+€_2€ s(l—e 5) :47rz;mj(5pj OnT (CSH).
j=

e u_ is called a topological solution if u. — 0 a.e. in T as e — 0.

e u. is called a stable solution if the linearized equation of (CSH) at u. has
nonnegative eigenvalues.

e A key point for proof: topological solution = strictly stable solution.

e Question: Is the converse also true?
Yes, [D. Bartolucci, L., C.-S. Lin, M. Onodera]:
stable solution < topological solution.



Entire solution of (CSH) in R?

d
1, "
Aue+ges(1_es):4ﬂ;mjapj on T (CSH).
i

e By considering the scaled function u.(e - +q) for g € T,
Au+ e“(l—e¥) =4mvdy in R?, veN;
e'(1—ev) € L}(R?).

1) topological solution: lim|,|_, o u(x) =0,

2) nontopological solution: lim|,|_, o u(x) = —oo.



Radially symmetric entire solutions of (CSH) in R?

e Let u = u(r;s) be the unique solution of
'+ 4 e(l1-e')=0, 0<r<oo, (CSH)

u(r)=2mlInr+s+o(l) as r—0.

Au(-;s)
s

5. satisfies the linearized equation of (CSH) at u(r; s):

°
>
I

P+ 18+ Flu)g =0,

$(0) = 1.



Radially symmetric entire solutions of (CSH) in R?

e O(r) = 6”(%;;5), fuy=e"(1—e"), B(s)= I F(u(r;s))rdr.

o B'(s) = [° F(u) 2452 rdr = [ ' (u)prdr = —lim,—s o0 1 (r).
e 3'(s) =0« ¢ is bounded in R2.

o If the linearized equation at u(r;s) is non-degenerate, then 3'(s) # 0.



Stable entire solutions of (CSH)

o p(r)= 6“5;;5), flu)y=e"(1—e"), B(s)= 1> F(u(r;s))rdr.
. B/(s) = fooo f’(u)%rdr = fooo f/(u)@rdr = —lim, o0 r'(r).
e The sign of 3'(s) is related to the stability of u(r;s) (3(s) > 0: unstable).

e u is called a stable entire solution of (CSH),

if the linearized equation of (CSH) at u has only nonnegative eigenvalues in any
compact subset of R2.



Stable entire solutions of (CSH)

e [H. Chan, C.-C. Fu, C.-S. Lin, (2002)]:
On {s |u(r;s) is a non-topological solution of (CHS)}, #'(s) > 0 (unstable).

e Any non-topological radially symmetric entire solution of (CSH) is unstable.

e [D. Bartolucci, L., C.-S. Lin, M. Onodera]:

1) Any non-topological entire solution (including non-radially symmetric) of
(CSH) is unstable.

2) Stable entire solution of (CSH) in R?
& topological solution, lim,|_, o u(x) = 0.

3) Stable solution of (CSH) on a torus
< topological solution, u. — 0 a.e. in T as e — 0.



Our main equation

d»

1 e"(1—e*)
Aue t 5w 47TZ m; 10, 4w; m;j 28y, on T (CP(1)).

e CP(1) model describes the planar ferromagnet and has rich vacuum and soliton
structure.

o 7€ (0,00), m;€N.

o Z={pj;eT|1<j<d andi=1,2}: the set of vortex points.

e Zi={pieT|1<j<d }+#0.

Ny =30 myfori=1,2, N=N —N,.



Our main equation

d>
1 e’ (1—e")
Au. + — 2 (T+e“a 47TZmJ 10p;.1 47sz:;mj725pj12 on T (CP(1)).

o u.(x) =2mj1lIn|x —pj1|+ O(1), x = p;, L.

o u.(x)=—-2mjoIn|x — pj 2| + O(1), x = p;,2.

limyp,, Ue(x) = —00, limyp, U:(x) = 400,

u. and %

change sign.

o fp Bt ld = 4nN = 4Ny — Nb).

T+e“£



Our main equation

d>
1 e’ (1—e")
Au. + — 2 (T+e“a 47TZmJ 10p;.1 47sz:;mj725pj12 on T (CP(1)).

o u.(x) =2mj1lIn|x —pj1|+ O(1), x = p;, L.

o u.(x)=—-2mjoIn|x — pj 2| + O(1), x = p;,2.

limyp,, Ue(x) = —00, limyp, U:(x) = 400,

u. and %

change sign.

o fp Bt ld = 4nN = 4Ny — Nb).

T+e“£

)

T+e“5

’fT




Our main equation

1 e%(1—e") S S
Au. + =47y mj10,, — 4Ty miady, on T (CP(1)).
j=1 J=1

2 (r+e%)

e The behavior of a topological solution of (CP(1)) is similar to (CSH):
topological solution = strictly stable solution.

e Question: stable solution < topological solution ?



Entire solution of (CP(1)) in R?

1 e’ (1—e*) -
Aue + €2 (T +eu)d - 4”2’"1 10p;, 47Tj221mj’2épj,2 on T (CP(1)).

e By considering the scaled function uc(e - +q) for g € T,

Au+ e(T(ief)Q = 4rvdy in R2, v € Z;

ey € LR,

1) topological solution: lim|_ 4o u(x) =0,
2) nontopological solution of type I: lim 4o u(x) = —00,

3) nontopological solution of type Il: lim|,|_, o u(x) = +o0.



Radially symmetric entire solution of (CP(1)) in R?

Let u = u(r;s) be the unique solution of

{ vt 4+ Ul =0, 0<r<oo, (CP(1)

u(r)=—-2mlInr+s+o(1) as r—0.

o ()= 242 f(u) = T B(s) = g Flu(ris)rr.

o4 E + u)p =TT F(u)p =0, 9(0) =1

o B(s)= [ f(u )6"(r #) rdr = Jo~ ' (u)erdr = —lim,, o reo'(r).

e The sign of 3'(s) is related to the stability of u(r;s) (8'(s) > 0: unstable).



Radially symmetric entire solution of (CP(1)) in R?

e For nontopological solution of (CSH), 5'(s) > 0 (unstable).

Theorem (K. Choe, J. Han, C.-S. Lin, T.-C. Lin)

(a) If m=0, then '(s) > 0 for Vs € R\{0}.
(b) If m > 1, then 3s, such that 3’ > 0 on (s, +00).

(b-1) If m=1or7 <1, then 8'(s) > 0, Vs € R\{s.}.
(b-2) If m > 1, then 3 7. > 1 such that {s < s, | B'(s) < 0} # 0.

e (b-2) makes a difference between (CSH) and (CP(1)).



Stable entire solutions of CP(1)
e '(s) < 0: stable.

Theorem (K. Choe, J. Han, C.-S. Lin, T.-C. Lin)

(b-2) If m > 1, then 3 7. > 1 such that {s < s, | §'(s) < 0} # 0.

Au+ £825) = —armiy on R2 (CP(1)),
u(x) =(=2m—2N)In|x| + O(1) as |x| = +oo,
—2m —2N < 2.

e If m>1and 7> 1, a non-topological stable entire solution of (CP(1)) might
exist.

e Question: Is there a stable bubbling solutions of (CP(1)) on a torus whenever
mj; > 1 for some i, j?



Stable entire solutions of CP(1)
e '(s) < 0: stable.

Theorem (K. Choe, J. Han, C.-S. Lin, T.-C. Lin)

(b-2) If m > 1, then 3 7. > 1 such that {s < s, | §'(s) < 0} # 0.

AU + % = 747rm50 on R2 (CP(]'))>
u(x) = (=2m = 2N)In|x| + O(1) as |x| — +o0,
—2m—2N < —-2.

e If m>1and 7> 1, a non-topological stable entire solution of (CP(1)) might
exist.

e Question: Is there a stable bubbling solutions of (CP(1)) on a torus whenever
mj; > 1 for some i, j?

No, there exists a global condition which allows m;; > 1 for some i, for the
non-existence result of stable bubbling solutions of (CP(1)) on a torus.



Stable solutions and topological solutions on a torus

Theorem (D. Bartolucci, L., C.-S. Lin, M. Onodera)

d>

1 e (1—e")
Bue + 5y 47rzm, 1001 4wjzzlmj,25pj,2 onT (CP(1))

(i) topological solution = strictly stable solution.
(ii) Assume
(H1) Ni# Ny,
(H2) either =1, or
if Ny > No, then m;, € [0,1] for ¥}, or
if No > Ny, then mj 5 € [0,1] for Vj.
Then, stable solution = topological solution.

o Non-existence result of stable bubbling solutions of (CP(1)) under a global
condition (H2) which allows mj ; > 1 for some i/, j.

e Question: Is the condition (H2) is necessary?



Stable solutions and topological solutions on a torus

Theorem (D. Bartolucci, L., C.-S. Lin, M. Onodera)

d>

1 e (1—e")
Bue + 5y 47rzm, 1001 4wjzzlmj,25pj,2 onT (CP(1))

(i) topological solution = strictly stable solution.
(ii) Assume
(H1) Ny # N,
(H2) either =1, or
if Ny > No, then m;, € [0,1] for ¥}, or
if No > Ny, then mj 5 € [0,1] for Vj.
Then, stable solution = topological solution.

o Non-existence result of stable bubbling solutions of (CP(1)) under a global
condition (H2) which allows mj ; > 1 for some i/, j.

e Question: Is the condition (H2) is necessary?
Yes, we will construct a stable bubbling solution when (H2) does not hold.



Main Goal

d>

1 e (1—e')
Au. + €2 (7 +eu)3 4WZ m;j10p; , 47rj§1 m; 20p;, on T (CP(1))

Our main goal is to investigate asymptotic behavior of various bubbling solutions
of (CP(1)) on a torus.

e Morse index = 0 : stable solutions,

e Morse index = 1 : mountain pass solutions,

e Solutions which blow up at one point.



Outline

Main Theorem |: construction of stable bubbling solutions



Main Theorem |: construction of stable bubbling solutions

o(H3)m1,2>1,1—m1’2<N:N1—N2<0.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let Ny < Ny, mjo =1 forj #1, (H3) hold.
Assume 3 a non-degenerate stable entire solution u of (CP(1)) for some T > 1.

Then, 3 stable solutions u. of (CP(1)) on a torus which blows up at p1 o € Zs.

o (H2) says that if Ny < Ny, then m;, € [0, 1] for Vj.
Thus, (H3) is an example which does not satisfy (H2).

e (H2) is a (necessary) condition for non-existence result of stable bubbling
solutions of (CP(1)) on a torus.



Main Theorem |: construction of stable bubbling solutions

0(H3)m1’2>1,1—m1’2<N:N1—N2<O.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let Ny < N, mj» =1 for j #1, (H3) hold.
Assume 3 a non-degenerate stable entire solution u of (CP(1)) for some 7 > 1.

Then, 3 stable solutions u. of (CP(1)) on a torus which blows up at p1 o € Zs.

e [K. Choe, J. Han, C.-S. Lin, T.-C. Lin]:
Under (H3), there might exist a non-degenerate stable entire solution u of
(CP(1)) for some 7 > 1.

o Idea of proof: the argument of [H. Chan, C.-C. Fu, C.-S. Lin, (2002)] and [C.-S.
Lin, S. Yan (2010)].



Outline

Main Theorem Il: asymptotic behavior of mountain pass solutions



Mountain pass solutions of (CSH)

Theorem (K. Choe (2007))

Let u. be mountain pass solutions of

Au. + e (1 —e* —471'ij5 onT (CSH).

2

IfN = Zle m; > 2, u. blows up at a maximum point of (.
e {ly is the unique solution of

4rN

Adg = ———
|T|

d
+47Tij6Pj onT, / dodx =0.0on T (CSH).
j=t T

e Question: What is an asymptotic behavior of mountain pass solutions of CP(1)
model?



Existence of mountain pass solutions of (CP(1))

[ ] AU + % e(:_( Teu )"3) =47 Zfil mj,léij — 4 Zj/il mj’25pj12 on T (CP(l))

__4nN d> —
o Aug = I + 4 ZJ 1 mj,lépj , —4rm Zj:l mj726pj,2, fﬂ' ugdx = 0.

e Letting v = u — ug, we can rewrite (CP(1)) as

1 e“°+"(1 — e”°+") 47N
A — = T CP(1)R).
v+ g2 (7- T euo+v)3 |T| on ( ( )R)

o v € W2(T) satisfies (CP(1)g) if and only if
it is a critical point of the associated functional

1 etV (1 — 7)™t 4 2r)  drNv
I = - 2 dx.
) / (I~ ey gy )




Existence of mountain pass solutions of (CP(1))

o [D. Chae, H.S. Nam, (1999)]:
Vie = U1 — Ug, Where up . is the topological (stable) solution of (CP(1)).

o P. = {¢ € C°([0,1], WH(T)) [ ¢(0) = vie, (1) = Cc},
where C. € R and I.(C.) < I.(v1 ).

o If N £ 0, then I, satisfies the Palais-Smale condition.

.. 3 a mountain pass solution u. = v} + ug of (CP(1)) such that

l(vZ) = inf sup L(¢(2)).
() = inf_ sup LC(0)



Main Theorem Il: mountain pass solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume T =1 and N # 0.

Let u. be mountain pass solutions of (CP(1)).
Then,

(i) ue blows up at one point p € Z.

(i) p € Zy if and only if Np > Nj.

e To prove this theorem, we need to understand the asymptotic behavior of
solutions of (CP(1)) on T in detail.



The asymptotic behavior of solutions of (CP(1))

Theorem (D. Bartolucci, L., C.-S. Lin, M. Onodera)

Let u. be solutions of (CP(1)) on a torus.
One of the following holds true:

(a) im0 (supK |u5|> =0,VKeT\Z
(b) lim. 0 (supK u5> <0,YK €T\ Z;
(c) lime—so (ian u€> >0,YK €T\ Z.

e \We need to improve the above theorem to show the asymptotic behavior of
mountain pass solutions u. of (CP(1)).

o Aot T =~ [ACu) + Sl

e If u. is a solution of (CP(1)), then —u, is a solution of a similar equation.
Thus it is enough to assume that u. satisfies (b).



The detail of asymptotic behavior of solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)
Let u. be solutions of (CP(1)) satisfying

lim (supug) <0, VKEeT\ 2.
K

e—0

Then, 3 a finite blow up points set S C T \ Z, such that

lerllze”) f(1=e) — Z ap0p.

2 -)3
e? (7 + e) e

e S can also be empty set.

e For (CSH) equation, the corresponding result was presented in [K. Choe, N.
Kim (2008)].



Comparison between (CP(1)) and (CSH)
Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume m; ; € N.
Let u. be solutions of (CP(1)) on a torus.
One of the following holds true:

() lime—so (supK |u€|> —=0,YK €T\ Z;
(ii) 3 a finite blow up points set S C T \ Z.

Moreover, either lim_y (supK ug) <0, or lim._yo (ian ug) >0 forVK € T\ Z.

Theorem (K. Choe, N. Kim (2008))

Let u. be solutions of (CSH) on a torus.
One of the following holds true:

(i) lime—0 (supK |u€|> =0,VKeT\Z
(i) 3 a finite blow up points set S # () C T;
(iii) ue — 2Ine is uniformly bounded in Ljs (T \ Z).




Remark of asymptotic behavior of solutions of (CP(1))

Since we assume mj ; € N,

we could exclude the possibility uz — 2Ine is uniformly bounded in LS (T '\ Z) for
(CP(1)).

If0 < mj, <1 forVj, in [D. Bartolucci, L., C.-S. Lin, M. Onodera],

it was shown that it might happen that

u. — 2Ine is uniformly bounded in L‘/’SC(T \ Z), converges to w in C/20c(T \ 22),

eV di d>
Aw + == Am g mj 10y, — 4w E m;j 26, , on T.
J=1 Jj=1



The detail of asymptotic behavior of solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Let u. be solutions of (CP(1)) satisfying

, 1 e’ (1—e')
El[}no (SL}I{p UE) < 0, VK eT \ Zz, ?m — Z apép.
PGSUZQ

Then,
(i) op > 87 if peS;

(Il) ap > min{O, (4 = 4mj,2)7r} if p= pj2 € Z>;

(iii) if T € (0,1], then ap, > 0 if p = pjo € Zo.
o If 7 €(0,1] or mj» =1 for Vj, then a, > 0 for Vp € S U 2,

47T(N]_ — N2) = L &ﬂl;)dx — ZPESUZZ Qp 2 0, Nl Z N2-

= JT 2 (rrevs



Main Theorem Il: mountain pass solutions of (CP(1))

Theorem (K. Choe, J. Han, L., C.-S. Lin)
Let u. be solutions of (CP(1)) satisfying

lim (sip u5> <0, VK €T\ 2.

e—0

If € (0,1] or mj> =1 for Vj, then Ny > N.

Theorem (K. Choe, J. Han, L., C.-S. Lin)

Assume T =1 and N # 0.

Let u. be mountain pass solutions of (CP(1)).
Then,

(i) u. blows up at one point p € Z.

(i) p € Z; if and only if Ny > Nj.

Remark

If N #0, mj; =1, Vi,j, then the result of the above theorem holds for any
7 € (0,+00).



Proof of asymptotic behavior of mountain pass solutions of

(CP(1))
e Idea of proof (N > 0):
1) An upper bound for I.(v}):

By using a radially symmetric profile near py », we construct a curve ¢ = (. € P;
such that

sup 1(¢(t,-)) <4nN(N+2mys)ine+ C as € — 0,
t€[0,1]

where my o> = max{mj, |1 <j < db}.



Proof of asymptotic behavior of mountain pass solutions of

(CP(1))
e Idea of proof (N > 0):
1) An upper bound for I.(v}):

By using a radially symmetric profile near py », we construct a curve ¢ = (. € P;
such that

sup 1(¢(t,-)) <4nN(N+2mys)ine+ C as € — 0,
t€[0,1]

where my o> = max{mj, |1 <j < db}.

2) A lower bound for I.(v}):

Estimate the value of I. for all possible asymptotic behavior by using Green's
representation formula.
Then

I(v2) = 4rN(N +2my 2 + o(1)) Ine as & — 0,
and the equality holds only if,
| et (1 — ety
e2 (14 ewotv)3

— 4nNop, ,. O



Outline

Main Theorem IlI: construction of (unstable) solutions blowing up at one point



Main Theorem Ill: construction of (unstable) solutions
blowing up at one point

e If 3 solutions u. of (CP(1)) satisfying

1 e¥(1—e')

- S 47N§ in the sense of measure
€2 (1 +eu)3 0 ’

then the well-known Pohozaev-type identity implies that

zp e ZU{x € T| Vup(x) = 0}.

e Conversely, for zp € ZU {x € T | Vup(x) = 0},

we want to construct bubbling solutions which blows up at zj.



Construction of (unstable) solutions blowing up at one
point

Theorem (K. Choe, J. Han, L., C.-S. Lin)
Let7>0, N>1 m;;=1,Vij . Assume

720 € ZU{x € T| Vuo(x) =0, det[D?*up](x) #0} when N >5,
720 € ZoU{x € T | Vug(x) =0, det[D?up](x) #0} when N = 3,4,
70 € Z, when N =1,2.

Then, 3 solutions u. of (CP(1)) which blow up at z,.

e Idea of proof: the argument of [H. Chan, C.-C. Fu, C.-S. Lin, (2002)] and [C.-S.
Lin, S. Yan (2010), (2013)]

e We only construct bubbling solutions from entire solutions of CP(1) equation,
but not the mean field equation.



Conclusions

On a torus,
e Stable solutions:

(CSH) stable solution < topological solution.
(CP(1)) 3 stable bubbling solutions which blow up at p € Z under some

conditions: 7> 1, Nop > Ny, myp > 1, p=p1o € 2.
-My 2 = max{mj,g}.



Conclusions

On a torus,
e Stable solutions:

(CSH) stable solution < topological solution.

(CP(1)) 3 stable bubbling solutions which blow up at p € Z under some
conditions: 7> 1, Nop > Ny, myp > 1, p=p1o € 2.

-My 2 = max{mj,g}.

e Mountain pass solutions:

(CSH) blows up at a maximum point of ug.

(CP(1)) blowsupatpe Z: =1, No >Ny & p=p11 € 4.
-my 1 = max{mj1}.



Conclusions

On a torus,
e Stable solutions:

(CSH) stable solution < topological solution.

(CP(1)) 3 stable bubbling solutions which blow up at p € Z under some
conditions: 7> 1, Nop > Ny, myp > 1, p=p1o € 2.

-My 2 = max{mj,g}.

e Mountain pass solutions:

(CSH) blows up at a maximum point of ug.

(CP(1)) blowsupatpe Z: =1, No >Ny & p=p11 € 4.
-my 1 = max{mj1}.

e Solutions which blow up at one point p € ZU {x € T | Vup(x) = 0}.



Conclusions

On a torus,
e Stable solutions:

(CSH) stable solution < topological solution.

(CP(1)) 3 stable bubbling solutions which blow up at p € Z under some
conditions: 7> 1, Nop > Ny, myp > 1, p=p1o € 2.

-My 2 = max{mj,g}.

e Mountain pass solutions:

(CSH) blows up at a maximum point of ug.

(CP(1)) blowsupatpe Z: =1, No >Ny & p=p11 € 4.
-my 1 = max{mj1}.

e Solutions which blow up at one point p € ZU {x € T | Vup(x) = 0}.
-Entire radially symmetric solutions.

-Green's representation formula.
-Pohozaev-type identity ...



Thank you for your attention!
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