Refined Finite-dimensional Reduction Method and Applications to Nonlinear Elliptic Equations

AO, Weiwei

Center of Advanced Study in Theoretical Sciences Joint work with J.C.Wei and J.Zeng

25,Oct.,2013

AO, Weiwei Refined Finite-dimensional Reduction

・ 同 ト ・ 国 ト ・ 国 ト …

æ

Introduction

We consider the following singularly perturbed elliptic problem

(LNT)
$$\varepsilon^2 \Delta u - u + u^p = 0$$
, $u > 0$ in Ω , $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$,

where Ω is a smooth bounded domain in \mathbb{R}^n with its unit outer normal ν , $n \ge 2$, $1 for <math>n \ge 3$, while p > 1 for n = 2, and $\varepsilon > 0$ is a small parameter.

イロト 不得 とくほ とくほ とうほ

Background

Problem (LNT) is known as the stationary equation of the Keller-Segel system in chemotaxes [KS, 1970].

$$\begin{cases} u_t = D_1 \Delta u - \chi \nabla \cdot (u \nabla \phi(v)) & \text{in } \Omega \times (0, +\infty), \\ v_t = D_2 \Delta v + k(u, v) & \text{in } \Omega \times (0, +\infty), \\ u(x, 0) = u_0 > 0, \quad v(x, 0) = v_0 > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where u denotes the population of amoebae , and v is the concentration of the chemical.

ヘロト ヘアト ヘビト ヘビト

It can also be viewed as a limiting stationary equation for the Geirer-Meinhardt system in biological pattern formation [GM,1972].

$$\begin{cases} u_t = d_1 \Delta u - u + \frac{u^{\rho}}{v^q} & \text{in } \Omega \times [0, T), \\ v_t = d_2 \Delta v - v + \frac{u^{\prime}}{v^s} & \text{in } \Omega \times [0, T), \\ \frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{on } \partial \Omega \times [0, T), \end{cases}$$
(1.2)

where u, v represent respectively the concentrations of two substances, activator and inhibitor.

$$\begin{cases} d\Delta u - u + \frac{u^{p}}{v^{q}} = 0 \text{ in } \Omega, \\ D\Delta v - \xi v + \frac{u^{r}}{v^{s}} = 0 \text{ in } \Omega, \\ u > 0, \quad v > 0 \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 \end{cases}$$
(1.3)

where p, q, r, s satisfy the condition $0 < \frac{p-1}{q} < \frac{r}{s+1}$.

Some Pioneering Works of Problem (LNT)

Point Concentration:

 Lin, Ni and Takagi 88,91, 93: Existence of least energy solution *u_ε* and asymptotic behavior (boundary spike).

ヘロト ヘアト ヘビト ヘビト

Some Pioneering Works of Problem (LNT)

Point Concentration:

- Lin, Ni and Takagi 88,91, 93: Existence of least energy solution *u_ε* and asymptotic behavior (boundary spike).
- A general principle: The location of *interior spike* is determined by the distance function from ∂Ω.

Bates and Fusco, Dancer and Yan, del Pino, Felmer and Wei, Grossi, Pistoia and Wei, Gui and Wei, Wei...

ヘロン 人間 とくほ とくほ とう

Some Pioneering Works of Problem (LNT)

Point Concentration:

- Lin, Ni and Takagi 88,91, 93: Existence of least energy solution *u_ε* and asymptotic behavior (boundary spike).
- A general principle: The location of *interior spike* is determined by the distance function from ∂Ω.

Bates and Fusco, Dancer and Yan, del Pino, Felmer and Wei, Grossi, Pistoia and Wei, Gui and Wei, Wei...

 Boundary spike are related to the mean curvature of the boundary ∂Ω.

Bates, Dancer and Shi, Dancer and Yan, del Pino, Felmer and Wei, Gui, Wei and Winter, Y. Y. Li, Wei, Wei and Winter...

Gui,Wei 00: Existence of multiple interior and boundary spikes.

ヘロト 人間 とくほとくほとう

- Gui,Wei 00: Existence of multiple interior and boundary spikes.
- Lin,Ni,Wei 07: Showed that there are at least C_n (c|log c|)ⁿ number of interior spikes.

イロン 不得 とくほ とくほう 一日

- Gui,Wei 00: Existence of multiple interior and boundary spikes.
- Lin,Ni,Wei 07: Showed that there are at least C_n (c|log c|)ⁿ number of interior spikes.
- See the review paper: J. Wei, Existence and Stability of Spikes for the Gierer-Meinhardt System, HANDBOOK OF DIFFERENTIAL EQUATIONS, Stationary Partial Differential Equations, volume 5, 2008.

ヘロン 人間 とくほ とくほ とう

э.

Higher Dimensional Concentration sets :

 Conjecture: ([Ni]) problem (LNT) possesses solutions which have m-dimensional concentration sets for 0 ≤ m ≤ N − 1.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Higher Dimensional Concentration sets :

- Conjecture: ([Ni]) problem (LNT) possesses solutions which have m-dimensional concentration sets for $0 \le m \le N 1$.
- F. Mahmoudi, A. Malchiodi, M. Montenegro, 02,04,05,07:
 Γ = ∂Ω or Γ ⊂ ∂Ω: an embedded closed and non-degenerate minimal submanifold of ∂Ω in ℝ³(Boundary concentration)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Higher Dimensional Concentration sets :

- Conjecture: ([Ni]) problem (LNT) possesses solutions which have m-dimensional concentration sets for $0 \le m \le N 1$.
- F. Mahmoudi, A. Malchiodi, M. Montenegro, 02,04,05,07:
 Γ = ∂Ω or Γ ⊂ ∂Ω: an embedded closed and non-degenerate minimal submanifold of ∂Ω in ℝ³(Boundary concentration)
- A. Malchiodi, W. Ni and J. Wei: For a unit ball in ℝⁿ, radial solution concentrating at N spheres: U^N_{j=1} {|x| = r^ε_j} (*Clustered layers*)

$$1 - r_1^{\varepsilon} \sim \varepsilon \log \frac{1}{\varepsilon}, \qquad r_{j-1}^{\varepsilon} - r_j^{\varepsilon} \sim \varepsilon \log \frac{1}{\varepsilon}, \quad j = 2, \cdots, N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 Wei, Yang 07: Γ is a linesegment intersecting with the boundary orthorgonally under some non-degeneracy condition and a gap condition in R². The gap condition was dropped for Rⁿ, Ao, Musso and Wei 10(Interior concentration).

ヘロン 人間 とくほ とくほ とう

• Lin, Ni and Wei 07:

Remark: It seems that the upper bound of the number of interior spikes $\frac{C}{(\epsilon | \log \epsilon |)^n}$ is almost "best" possible, where the constant C depend on n, Ω, p , because of the boundary mean curvature.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Lin, Ni and Wei 07:

Remark: It seems that the upper bound of the number of interior spikes $\frac{C}{(\epsilon | \log \epsilon|)^n}$ is almost "best" possible, where the constant C depend on n, Ω, p , because of the boundary mean curvature.

• We shall address the question of the maximal possible number of interior spikes??

・ロト ・ 理 ト ・ ヨ ト ・

p is subcritical => solutions are uniformly bounded (Lin-Ni-Takagi [LNT]).

The energy functional associated with (LNT) is

$$E_{\varepsilon}(u) = \int_{\Omega} \varepsilon^2 |\nabla u|^2 + u^2 - rac{1}{p+1} \int_{\Omega} u^{p+1}_+ dz.$$

By $z = \varepsilon x$,

$$E(u) = \varepsilon^n \int_{\frac{\Omega}{\varepsilon}} |\nabla u|^2 + u^2 - \frac{1}{p+1} u_+^{p+1} dx.$$

Each spike contributes to at least $O(\varepsilon^n)$ energy \implies the number of interior spikes can not exceed $O(\varepsilon^{-n})$.

ヘロト ヘアト ヘビト ヘビト

э

Main Theorem

Theorem 1: (Ao, Wei and Zeng)

There exists an $\varepsilon_0 > 0$ such that for $0 < \varepsilon < \varepsilon_0$, and any positive integer *k* satisfying

$$1 \le k \le \frac{\delta(\Omega, n, p)}{\varepsilon^n}, \tag{1.4}$$

ヘロト ヘアト ヘビト ヘビト

3

where $\delta(\Omega, n, p)$ is a constant depending on n, Ω and p only, problem (LNT) has a solution u_{ε} that possesses exactly k local maximum points.

Remark 1:

The upper bound for k is optimal.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Remark 1:

- The upper bound for k is optimal.
- The only result on the optimal upper bound for the number of spikes is the one-dimensional situation.

$$\varepsilon^2 u'' - V(x)u + u^p = 0, u > 0, u \in H^1(\mathbb{R}).$$
 (1.5)

Felmer-Martinez-Tanaka 06: They constructed solutions to (1.5) with $\frac{C}{c}$ number of spikes.(By ODE method)

ヘロン 人間 とくほ とくほ とう

Remark 1:

- The upper bound for k is optimal.
- The only result on the optimal upper bound for the number of spikes is the one-dimensional situation.

$$\varepsilon^2 u'' - V(x)u + u^p = 0, u > 0, u \in H^1(\mathbb{R}).$$
 (1.5)

Felmer-Martinez-Tanaka 06: They constructed solutions to (1.5) with $\frac{C}{\varepsilon}$ number of spikes.(By ODE method)

Felmer-Martinez-Tanaka 06,del Pino-Felmer-Tanaka, 02 Extension to Gierer-Meinhardt system.

ヘロン 人間 とくほ とくほ とう

Sketch of the Proof

• Method: Localized energy method as in [GW],[LNW].

• There are two main difficulties. First, the distance between spikes is assumed only to be $O(\varepsilon)$. In the Lyapunov-Schmidt reduction process, we have to prove that all the estimates are uniform with respect to the integer *k*.

• Second, we have to detect the difference in the energy when spikes move to the boundary of the configuration space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• By the following rescaling:

$$z = \varepsilon x, \ x \in \Omega_{\varepsilon} := \{\varepsilon x \in \Omega\},\$$

equation (LNT) becomes

$$(LNT1) \quad \left\{ \begin{array}{l} \Delta u - u + u^p = 0 \text{ in } \Omega_{\varepsilon} \\ u > 0 \text{ in } \Omega_{\varepsilon}, \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega_{\varepsilon}. \end{array} \right.$$

AO, Weiwei Refined Finite-dimensional Reduction

ヘロト 人間 とくほとくほとう

• By the following rescaling:

$$z = \varepsilon x, \ x \in \Omega_{\varepsilon} := \{\varepsilon x \in \Omega\},\$$

equation (LNT) becomes

$$(LNT1) \quad \left\{ \begin{array}{l} \Delta u - u + u^{p} = 0 \ \text{in } \Omega_{\varepsilon} \\ u > 0 \ \text{in } \Omega_{\varepsilon}, \ \frac{\partial u}{\partial \nu} = 0 \ \text{on } \partial \Omega_{\varepsilon}. \end{array} \right.$$

• Associated with problem (LNT1) is the energy functional:

$$J_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega_{\varepsilon}} (|\nabla u|^2 + u^2) - \frac{1}{p+1} \int_{\Omega_{\varepsilon}} u_+^{p+1}, \ u \in H^1(\Omega_{\varepsilon}),$$

where $u_{+} = \max(u, 0)$.

イロト イポト イヨト イヨト

Profile function

• We will use the solution w of

$$(GS) \quad \begin{cases} \bigtriangleup w - w + w^p = 0, \ w > 0 & \text{in } \mathbb{R}^n, \\ w(0) = \max_{y \in \mathbb{R}^n} \ w(y), \ w \to 0 & \text{at } \infty. \end{cases}$$

to build up the approximate solution for (LNT).

イロト 不得 トイヨト イヨト 二日 二

Approximate Solutions

Configuration space:

1

$$\Lambda_{k} := \left\{ (Q_{1}, \cdots, Q_{k}) \in \Omega^{k} \middle| \begin{array}{l} \min_{i \neq j} |Q_{i} - Q_{j}| \ge \rho \varepsilon, \\ \min_{i,j,d(Q_{j},\partial\Omega) \le \delta_{\varepsilon}} |Q_{i} - Q_{j}^{*}| \ge \rho \varepsilon \end{array} \right\}$$
(1.6)

where $Q_j^* = Q_j + 2d(Q_j, \partial \Omega)\nu_{\bar{Q}_j}$. For $Q \in \Omega$, define $w_{\varepsilon,Q}$ to be the unique solution of

Approximate solution: for $\mathbf{Q} = (Q_1, \cdots, Q_k) \in \Lambda_k$,

$$W_{\varepsilon,\mathbf{Q}} = \sum_{i=1}^{k} W_{\varepsilon,\mathbf{Q}_{i}}, \ x \in \Omega_{\varepsilon}.$$
(1.7)

AQ Weive Before Einterdimensional Reduction

Lyapunov-Schmidt reduction

Using Lyapunov-Schmidt reduction, one can find a solution $u = w_{\varepsilon,\mathbf{Q}} + \phi_{\varepsilon,\mathbf{Q}}:$ $\begin{cases} \Delta(w_{\varepsilon,\mathbf{Q}} + \phi) - (w_{\varepsilon,\mathbf{Q}} + \phi) + (w_{\varepsilon,\mathbf{Q}} + \phi)^p = \sum_{i=1,\cdots,k,j=1,\cdots,n} c_{ij} Z_{ij} \\ \frac{\partial \phi}{\partial \nu} = 0, \quad \text{on} \quad \partial \Omega_{\varepsilon} \\ \int_{\Omega_{\varepsilon}} \phi Z_{ij} = 0 \quad \text{for } i = 1, \cdots, k, \ j = 1, \cdots, n, \end{cases}$

for ρ large.

$$\|h\|_{*} = \sup_{x \in \Omega_{\varepsilon}} |(\sum_{i=1}^{k} w_{\varepsilon,Q_{i}}^{\eta})^{-1} h(x)|, \text{ for } 0 < \eta < 1.$$

Maximization Problem

Fix $\mathbf{Q} \in \Lambda_k$, we define a new functional $\mathcal{M}_{\varepsilon} : \Lambda_k \to \mathbb{R}$ by

$$\mathcal{M}_{\varepsilon}(\mathbf{Q}) = J_{\varepsilon}(u_{\varepsilon,\mathbf{Q}}) = J_{\varepsilon}[w_{\varepsilon,\mathbf{Q}} + \phi_{\varepsilon,\mathbf{Q}}].$$
(1.8)

Define

$$C_k^{\varepsilon} = \max_{\mathbf{Q} \in \Lambda_k} \{ \mathcal{M}_{\varepsilon}(\mathbf{Q}) \}.$$
(1.9)

ヘロン 人間 とくほ とくほ とう

1

Lemma : If \mathbf{Q}_k is a critical point of $\mathcal{M}_{\varepsilon}(\mathbf{Q}_k)$ in Λ_k , then $u_{\varepsilon,\mathbf{Q}_k} = w_{\varepsilon,\mathbf{Q}_k} + \phi_{\varepsilon,\mathbf{Q}_k}$ is a critical point of the energy functional $J_{\varepsilon}(u)$, i.e. a solution of equation (LNT1).

Maximization Problem

Proposition 1 :

(R)
$$C_{k+1}^{\varepsilon} \geq C_k^{\varepsilon} + I(w) + O(e^{-(1+\xi)\rho}),$$

for some $\xi > 0$ independent of k, ρ, ε , and I(w) is the energy of *w*:

$$I(w) = \frac{1}{2} \int_{\mathbb{R}^n} (|\nabla w|^2 + w^2) - \frac{1}{p+1} \int_{\mathbb{R}^n} w^{p+1}.$$
 (1.10)

<ロ> (四) (四) (三) (三) (三)

Maximization Problem

Remark: We need to compare $J_{\varepsilon}(u_{\varepsilon,Q_1,\cdots,Q_{k+1}})$ and $J_{\varepsilon}(u_{\varepsilon,Q_1,\cdots,Q_k})$.

$$u_{\varepsilon,Q_1,\cdots,Q_{k+1}} = u_{\varepsilon,Q_1,\cdots,Q_k} + u_{\varepsilon,Q_{k+1}} + \varphi_{k+1}. \quad (1.11)$$

One can get $\|\varphi_{k+1}\|_* \leq Ce^{-\frac{1+\xi}{2}\rho}$, if we use this estimate to estimate the L^2 norm of φ_{k+1} , we get

$$\int_{\Omega_\epsilon} |arphi_{k+1}|^2 \leq C e^{-(1+\xi)
ho} \int_{\Omega_\epsilon} W^2 \leq C k e^{-(1+\xi)
ho} .$$

This estimate depends linearly on k.

・ロト ・ 理 ト ・ ヨ ト ・

The Secondary Lyapunov-Schmidt Reduction

Lemma : It holds

$$(K)\int_{\Omega_{\varepsilon}}(|
abla arphi_{k+1}|^2+arphi_{k+1}^2)\leq Ce^{-(1+\xi)
ho},$$

for some constant $C > 0, \xi > 0$ independent of ε, ρ, k and $\mathbf{Q} \in \Lambda_{k+1}$.

イロン 不得 とくほ とくほ とうほ

Idea for the Key Lemma

To prove (K), we need to perform a further decomposition of the function φ_{k+1} . In the proof, we perform a secondary Lyapunov-Schmidt reduction.

$$\bar{L}\varphi_{k+1} = \bar{S} + \sum_{i=1,\cdots,k+1,j=1,\cdots,n} c_{ij} Z_{ij}$$
(1.12)

for some constants $\{c_{ij}\}$, where

$$\bar{L} = \Delta - 1 + p \tilde{W}^{p-1},$$

$$\tilde{W}^{p-1} = \begin{cases} \frac{(\bar{W} + \varphi_{k+1})^p - \bar{W}^p}{p \varphi_{k+1}}, & \text{if } \varphi_{k+1} \neq 0 \\ \bar{W}^{p-1}, & \text{if } \varphi_{k+1} = 0, \end{cases}$$

$$\bar{S} = (u_{\varepsilon,Q_1,\cdots,Q_k} + u_{\varepsilon,Q_{k+1}})^p - u_{\varepsilon,Q_1,\cdots,Q_k}^p - u_{\varepsilon,Q_{k+1}}^p.$$

Around each spike, we project φ_{k+1} into the orthogonal space of the unstable eigenfunctions and kernels.

$$\varphi_{k+1} = \psi + \sum_{i=1}^{k+1} c_i \phi_i + \sum_{i=1,\cdots,k+1,j=1,\cdots,n} d_{ij} Z_{ij}$$
 (1.13)

for some c_i , d_{ij} such that

$$\int_{\Omega_{\varepsilon}} \psi \phi_i dx = \int_{\Omega_{\varepsilon}} \psi Z_{ij} dx = 0, \ i = 1, ..., k+1, \ j = 1, ..., n.$$
(1.14)

In this way, we obtain a linear operator which is positively definite, i.e.

$$\int_{\Omega_{\varepsilon}} [-\bar{L}(\psi)\psi] \ge c_0 \|\psi\|_{H^1(\Omega_{\varepsilon})}^2$$

ヘロト ヘアト ヘビト ヘビト

Thus we need to estimate three components of φ_{k+1} : the coefficients of projections to the unstable eigenfunction c_i and kernels d_{ij} , and the orthogonal part ψ .

$$\bar{L}\psi + \sum_{i=1}^{k+1} c_i \bar{L}\phi_i + \sum_{i=1,\cdots,k+1,j=1,\cdots,N} d_{ij} \bar{L}Z_{ij} = \bar{S} + \sum_{i=1,\cdots,k+1,j=1,\cdots,N} c_{ij} Z_{ij}.$$
(1.15)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

(1.16)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

$$\begin{aligned} d_{ij} &= \int_{\Omega_{\varepsilon}} \varphi_{k+1} Z_{ij} \\ &= \int_{\Omega_{\varepsilon}} (\phi_{\varepsilon, Q_{1}, \cdots, Q_{k+1}} - \phi_{\varepsilon, Q_{1}, \cdots, Q_{k}} - \phi_{\varepsilon, Q_{k+1}}) Z_{ij} \\ &= -\int_{\Omega_{\varepsilon}} \phi_{\varepsilon, Q_{k+1}} Z_{ij} \end{aligned}$$

 $\varphi_{k+1} = \phi_{\varepsilon, Q_1, \cdots, Q_{k+1}} - \phi_{\varepsilon, Q_1, \cdots, Q_k} - \phi_{\varepsilon, Q_{k+1}},$

$$\begin{cases} |d_{ij}| \le c e^{-(1+\xi)\frac{\rho}{2}} e^{-\eta \frac{|Q_i - Q_{k+1}|}{\varepsilon}} \text{ for } i = 1, \cdots, k\\ |d_{k+1,j}| \le c e^{-(1+\xi)\frac{\rho}{2}} \sum_{i=1}^{k} e^{-\eta \frac{|Q_i - Q_{k+1}|}{\varepsilon}} \end{cases}$$
(1.17)

for some $\eta > 0$.

Estimate of dij :

Estimate of c_i : Multiply the above equation (1.15) by ϕ_i .

$$c_{i} \int_{\Omega_{\varepsilon}} (\bar{L}(\phi_{i}))\phi_{i} = -\sum_{j=1}^{n} d_{ij} \int_{\Omega_{\varepsilon}} \bar{L}(Z_{ij})\phi_{i} + \int_{\Omega_{\varepsilon}} \bar{S}\phi_{i} - \int_{\Omega_{\varepsilon}} \bar{L}\psi\phi_{i},$$
$$\int_{\Omega_{\varepsilon}} (\bar{L}(\phi_{i}))\phi_{i} = -\lambda_{1} \int_{\mathbb{R}^{n}} \phi_{0}^{2} + O(e^{-(1+\xi)\frac{\rho}{2}}).$$
(1.18)

$$\begin{cases} |c_{i}| \leq c e^{-(1+\xi)\frac{\rho}{2}} e^{-\eta \frac{|Q_{i}-Q_{k+1}|}{\varepsilon}} + e^{-\xi\rho} \|\psi\|_{H^{1}(B_{\frac{\rho}{2}}(\frac{Q_{i}}{\varepsilon}))}, \ i = 1, ..., k \\ |c_{k+1}| \leq c e^{-(1+\xi)\frac{\rho}{2}} \sum_{i=1}^{k} e^{-\eta \frac{|Q_{i}-Q_{k+1}|}{\varepsilon}} + e^{-\xi\rho} \|\psi\|_{H^{1}(B_{\frac{\rho}{2}}(\frac{Q_{k+1}}{\varepsilon}))}, \\ (1.19) \end{cases}$$

for some $\eta > 0, \xi > 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Estimate of ψ :

$$\int_{\Omega_{\varepsilon}} [-\bar{L}(\psi)\psi] \ge c_0 \|\psi\|_{H^1(\Omega_{\varepsilon})}^2$$

$$\|\psi\|_{H^1(\Omega_{\epsilon})} \leq c(\sum_{ij} |d_{ij}| + e^{-\frac{\rho}{2}(1+\xi)} + \|\bar{S}\|_{L^2(\Omega_{\epsilon})}).$$
 (1.20)

$$\|\varphi_{k+1}\|_{H^{1}(\Omega_{\epsilon})} \leq c(e^{-\frac{\rho}{2}(1+\xi)} + \|\bar{S}\|_{L^{2}})$$

$$\leq ce^{-\frac{\rho}{2}(1+\xi)}.$$
(1.21)

Using the relation (R) between C_k^{ε} and C_{k+1}^{ε} , we have the following: **Proposition:** The maximization problem

$$\max_{\mathbf{Q}\in\bar{\Lambda}_{k}}\mathcal{M}_{\varepsilon}(\mathbf{Q}) \tag{1.22}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

has a solution $\mathbf{Q}^{\varepsilon} \in \Lambda_k^{\circ}$, i.e., the interior of Λ_k .

Remark 2:

• As to the solution to (LNT) in the theorem , an interesting problem is to study the *homogenization* of the measure $\varepsilon^{-n} |\nabla u|^2 dx$. We expect that it will approach some kind of Lebesgue measure. As $\varepsilon \to 0$, the locations of the maximum points should approach to some sphere-packing positions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remark 2:

- As to the solution to (LNT) in the theorem , an interesting problem is to study the *homogenization* of the measure $\varepsilon^{-n} |\nabla u|^2 dx$. We expect that it will approach some kind of Lebesgue measure. As $\varepsilon \to 0$, the locations of the maximum points should approach to some sphere-packing positions.
- We consider the interior spike solutions. A natural and interesting question is whether we can get similar result for the boundary spike solutions O(¹/_{zn-1}).

ヘロン ヘアン ヘビン ヘビン

Other Applications

Nonlinear Schrödinger Equation:

$$\Delta u - V(x)u + u^{p} = 0, \ u > 0 \ \text{ in } \mathbb{R}^{n}, \ u \in H^{1}(\mathbb{R}^{n}),$$
 (1.23)

Equation (1.23) arises in the study of solitary waves in nonlinear equations of the Klein-Gordon or Schrödinger type,

$$i\hbar \frac{\partial \tilde{\psi}}{\partial t} = -\hbar^2 \Delta \tilde{\psi} + \tilde{V} \tilde{\psi} - |\tilde{\psi}|^{p-1} \tilde{\psi}$$

Let $\tilde{\psi} = e^{-i\lambda t/h}\psi(x)$, then $u(x) = \psi(hx)$, with $V(x) = \tilde{V}(hx) - \lambda$ will satisfy (1.23).

Known Results

:

Rabinowitz 92: Existence of least energy solution

$$0 < \inf_{x \in \mathbb{R}^n} V(x) \le V(x) \le \lim_{|x| \to \infty} \inf V(x),$$

and

$$V(x) \not\equiv \lim_{|x| \to \infty} \inf V(x)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Known Results

2

Rabinowitz 92: Existence of least energy solution

$$0 < \inf_{x \in \mathbb{R}^n} V(x) \le V(x) \le \lim_{|x| \to \infty} \inf V(x),$$

and

$$V(x) \not\equiv \lim_{|x| \to \infty} \inf V(x)$$

• Bahri and Li 90: Existence of positive solution using minimax methods under a suitable decay condition on *V* at infinity.

ヘロン 人間 とくほ とくほ とう

• For multiplicity of positive solutions of (1.23):

Coti-Zelati and Rabinowitz 92: Existence of infinitely many positive solutions, when V is a periodic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• For multiplicity of positive solutions of (1.23):

Coti-Zelati and Rabinowitz 92: Existence of infinitely many positive solutions, when V is a periodic.

• Wei and Yan 2010: Existence of infinitely many non-radial positive bump solutions for (1.23) under the following assumption at infinity:

$$V(x) = V(|x|) = V_{\infty} + \frac{a}{|x|^m} + O(\frac{1}{|x|^{m+\sigma}}), \ m > 1, V_{\infty}, a, \sigma > 0.$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

• For multiplicity of positive solutions of (1.23):

Coti-Zelati and Rabinowitz 92: Existence of infinitely many positive solutions, when V is a periodic.

• Wei and Yan 2010: Existence of infinitely many non-radial positive bump solutions for (1.23) under the following assumption at infinity:

$$V(x) = V(|x|) = V_{\infty} + \frac{a}{|x|^m} + O(\frac{1}{|x|^{m+\sigma}}), \ m > 1, V_{\infty}, a, \sigma > 0.$$

• Del Pinol, Wei and Yao 2013:

$$V(x) = V_{\infty} + \frac{a}{|x|^m} + O(\frac{1}{|x|^{m+\sigma}}), \ m > 1, V_{\infty}, a, \sigma > 0.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Cerami-Passasseo-Solimini (2012) developed a localized Nehari's manifold argument and localized variational method to prove the existence of infinitely many positive solutions of the following equation

$$\begin{cases} \Delta u - (1 + \delta V)u + u^{\rho} = 0 & \text{in } \mathbb{R}^n \\ u > 0 & \text{in } \mathbb{R}^n, \ u \in H^1(\mathbb{R}^n) \end{cases}$$
(1.24)

where the potential *V* satisfies suitable decay assumption and *p* is subcritical for δ small.

$$\begin{cases} V(x) \to 0 \quad \text{as } |x| \to \infty, \\ \exists \ 0 < \bar{\eta} < 1, \lim_{|x| \to \infty} V(x) \ e^{\bar{\eta}|x|} = +\infty, \\ \sup_{x \in \mathbb{R}^n} \|V\|_{L^{\frac{n}{2}}(B_1(x))} < \infty \end{cases}$$
(1.25)

ヘロト ヘアト ヘビト ヘビト

$$\begin{cases} \Delta u - (1 + \delta V(x))u + f(u) = 0 & \text{in } \mathbb{R}^n \\ u > 0 & \text{in } \mathbb{R}^n, \quad u \in H^1(\mathbb{R}^n) \end{cases}$$
(1.26)

Assumption on *f*:

(f_1) $f : \mathbb{R} \to \mathbb{R}$ is of class $C^{1+\sigma}$ for some $0 < \sigma \le 1$ and f(u) = 0 for $u \le 0$, f'(0) = 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\begin{cases} \Delta u - (1 + \delta V(x))u + f(u) = 0 & \text{in } \mathbb{R}^n \\ u > 0 & \text{in } \mathbb{R}^n, \quad u \in H^1(\mathbb{R}^n) \end{cases}$$
(1.26)

Assumption on *f*:

(f₁) $f : \mathbb{R} \to \mathbb{R}$ is of class $C^{1+\sigma}$ for some $0 < \sigma \le 1$ and f(u) = 0 for $u \le 0$, f'(0) = 0.

 (f_2) The equation

$$\begin{cases} \Delta w - w + f(w) = 0, \ w > 0 \text{ in } \mathbb{R}^n \\ w(0) = \max_{y \in \mathbb{R}^n} w(y), \ w \to 0 \text{ as } |y| \to \infty \end{cases}$$
(1.27)

has a non-degenerate solution w.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Assumption on *V*:

$$\begin{cases} (H1) \quad V(x) \to 0 \quad \text{as } |x| \to \infty, \\ (H2) \quad \exists \quad 0 < \bar{\eta} < 1, \lim_{|x| \to \infty} V(x) \ e^{\bar{\eta}|x|} = +\infty, \\ (H3) \quad V \text{ is continuous in } \mathbb{R}^n. \end{cases}$$
(1.28)

Theorem 2 (Ao and Wei):

Let *f* satisfy assumptions $(f_1) - (f_2)$ and the potential *V* satisfy assumptions (H1) - (H3). Then there exists a positive constant δ_0 , such that for $0 < \delta < \delta_0$, problem (1.26) has infinitely many positive solutions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Remark:

We note that the function

$$f(w) = w^{p} - aw^{q}, \text{ for } w \ge 0$$
 (1.29)

with a constant $a \ge 0$ satisfies the above assumptions $(f_1) - (f_2)$ if $1 < q < p < (\frac{N+2}{N-2})_+$. We should point out that *f* need not to be superlinear, only existence and non-degeneracy are needed.

$$f(w) = \frac{w^2}{1 + w^2}, \text{ for } w \ge 0$$
 (1.30)

ヘロン 人間 とくほ とくほ とう

$$\begin{split} \Lambda_1 &= \mathbb{R}^n, \ \Lambda_k := \{ (Q_1, \cdots, Q_k) \in \mathbb{R}^{nk} | \min_{i \neq j} |Q_i - Q_j| \geq \rho \}, \forall k > 1. \\ (1.31) \\ \text{Fixing } \mathbf{Q}_k &= (Q_1, \cdots, Q_k) \in \Lambda_k, \text{ we define the sum of } k \text{ spikes} \\ \text{as} \end{split}$$

$$w_{Q_1,\dots,Q_k} = \sum_{i=1}^k w_{Q_i}$$
 where $w_{Q_i} = w(x - Q_i)$. (1.32)

One can show that there exists a constant ρ_0 , such that for $\rho \ge \rho_0$, and $\delta < c_{\rho}$, there is a solution $u = w_{\mathbf{Q}_{\mu}} + \phi_{\mathbf{Q}_{\mu}}$ of

$$\begin{cases} \Delta u - (1 + \delta V)u + f(u) = \sum_{i=1,\dots,k}^{j=1,\dots,n} c_{ij} Z_{ij}, \\ \int_{\mathbb{R}^n} \phi_{\mathbf{Q}_k} Z_{ij} = 0, \text{ for } i = 1, \cdots, k, j = 1, \cdots, n. \end{cases}$$

In the step 5, one need to maximize $\mathcal{M}(\mathbf{Q}_k)$ over $\bar{\Lambda}_k$, where

$$\mathcal{M}(\mathbf{Q}_k) = J(u_{\mathbf{Q}_k}) = J[w_{\mathbf{Q}_k} + \phi_{\mathbf{Q}_k}]$$

= $\frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + (1 + \delta V) u^2 dx - \int_{\mathbb{R}^N} F(u) dx$

where $F(u) = \int_0^u f(s) ds$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

In order to get the relation between C_k and C_{k+1} , one need to get the globel estimate of φ_{k+1} , where

 $u_{Q_1, \dots, Q_{k+1}} = u_{Q_1, \dots, Q_k} + w_{Q_{k+1}} + \varphi_{k+1}$. Lemma 2: There exists $\rho_0 > 0$, such that for $\rho > \rho_0$ and $\delta < c_{\rho}$, it holds

$$\int_{\mathbb{R}^{n}} (|\nabla \varphi_{k+1}|^{2} + \varphi_{k+1}^{2}) \leq C e^{-\xi \rho} \sum_{i=1}^{k} w(|Q_{k+1} - Q_{i}|)$$

$$+ C \delta^{2} (\int_{\mathbb{R}^{n}} V^{2} w_{Q_{k+1}}^{2} dx + (\int_{\mathbb{R}^{n}} |V| w_{Q_{k+1}} dx)^{2})$$

for some constants $C > 0, \xi > 0$ independent of ρ, k and $\mathbf{Q}_{k+1} \in \Lambda_{k+1}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition 2: There exists $\mathbf{Q}_k = (Q_1, Q_2, \cdots, Q_k) \in \Lambda_k$ such that

$$C_k = \mathcal{M}(\mathbf{Q}_k);$$
 (1.34)

There holds

$$\mathcal{C}_{k+1} > \mathcal{C}_k + I_1(\boldsymbol{w}), \tag{1.35}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

where $I_1(w)$ is the energy of the solution w of (1.27):

$$I_{1}(w) = \frac{1}{2} \int_{\mathbb{R}^{N}} (|\nabla w|^{2} + w^{2}) - \int_{\mathbb{R}^{N}} F(w) dx.$$
 (1.36)

Proof:

• Mathematical induction.

AO, Weiwei Refined Finite-dimensional Reduction

Proof:

- Mathematical induction.
- First, we need to show that the maximum points in $\bar{\Lambda}_k$ will not go to infinity. This is guaranteed by the slow decay assumption on the potential *V*.

ヘロン 人間 とくほ とくほ とう

Proof:

- Mathematical induction.
- First, we need to show that the maximum points in $\bar{\Lambda}_k$ will not go to infinity. This is guaranteed by the slow decay assumption on the potential *V*.
- Second, we have to detect the difference in the energy when the spikes move to the boundary of the configuration space. We have to detect the difference in energy between the *k*-spikes energy and the *k* + 1-spikes energy.

ヘロト ヘ戸ト ヘヨト ヘヨト

Nonlinear Schrodinger system:

$$\begin{cases} -\Delta u + (1 + \delta a(x))u = \mu_1 u^3 + \beta v^2 u\\ -\Delta v + (1 + \delta b(x))v = \mu_2 v^3 + \beta u^2 v \end{cases} \text{ in } \mathbb{R}^n \qquad (1.37)$$

for $n \leq 3$, where μ_1, μ_2 and δ are positive constants, $\beta \in \mathbb{R}$ and the potentials a(x), b(x) are continuous functions satisfying suitable decay assumption, but without any symmetry property.

Peng and Wang 2013: They proved the existence of infinitely many solutions of synchronized type to (1.37) for radially symmetric potentials a(|x|), b(|x|) satisfying some algebraic decay assumption.

くロト (過) (目) (日)

Assumption on *a*, *b*:

$$\begin{cases} (H'_1) \ a(x), \ b(x) \ \text{are continuous functions in } \mathbb{R}^N, \\ (H'_2) \ a(x), \ b(x) \to 0 \ \text{ as } |x| \to \infty, \ a(x), \ b(x) \ge 0 \ \text{ as } |x| \to \infty, \\ (H'_3) \ \exists \ 0 < \bar{\eta} < 1, \ \lim_{|x| \to \infty} (\alpha^2 a(x) + \gamma^2 b(x)) e^{\bar{\eta}|x|} = +\infty, \\ & (1.38) \end{cases}$$

where
$$\alpha = \sqrt{\frac{\mu_2 - \beta}{\mu_1 \mu_2 - \beta^2}}$$
 and $\gamma = \sqrt{\frac{\mu_1 - \beta}{\mu_1 \mu_2 - \beta^2}}$.

Theorem 3 (Ao and Wei)

Let potentials *a*, *b* satisfy assumptions $(H'_1) - (H'_3)$. Then there exists $\beta^* > 0$, and $\delta_0 > 0$, such that for $\beta \in (-\beta^*, 0) \cup (0, \min\{\mu_1, \mu_2\}) \cup (\max\{\mu_1, \mu_2\}, \infty)$, and $0 < \delta < \delta_0$, system (1.37) has infinitely many positive solutions.

ヘロン 人間 とくほ とくほ とう

$$\begin{cases} -\Delta u + u = \mu_1 u^3 + \beta v^2 u, \\ -\Delta v + v = \mu_2 v^3 + \beta u^2 v. \end{cases}$$
(1.39)

It is easy to see that the following pair

$$(\boldsymbol{U},\boldsymbol{V}) = (\alpha \boldsymbol{w}, \gamma \boldsymbol{w}) \tag{1.40}$$

solves (1.39) provided that $\beta > \max\{\mu_1, \mu_2\}$ or $-\sqrt{\mu_1\mu_2} < \beta < \min\{\mu_1, \mu_2\}$, where

$$\alpha = \sqrt{\frac{\mu_2 - \beta}{\mu_1 \mu_2 - \beta^2}} > 0, \ \gamma = \sqrt{\frac{\mu_1 - \beta}{\mu_1 \mu_2 - \beta^2}} > 0.$$
(1.41)

and w is the unique solution of

$$\left\{ \begin{array}{ll} \Delta w - w + w^3 = 0, \\ w(0) = \max_{y \in \mathbb{R}^N} w(y), \ w(y) \to 0 \ \text{as} \ |y| \to \infty. \end{array} \right. \tag{1.42}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Lemma

There exists $\beta^* > 0$, such that for $\beta \in (-\beta^*, 0) \cup (0, \min\{\mu_1, \mu_2\}) \cup (\max\{\mu_1, \mu_2\}, \infty), (U, V)$ is non-degenerate for the system (1.39) in H¹(\mathbb{R}^n) in the sense that the kernel is given by

$$\operatorname{Span}\{(\frac{\partial U}{\partial x_j}, \frac{\partial V}{\partial x_j})|j=1, \cdots, n\}.$$
 (1.43)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Thank You!

AO, Weiwei Refined Finite-dimensional Reduction

We first analyze $w_{\varepsilon,Q}$. To this end, set

$$\varphi_{\varepsilon,Q} = w(\frac{z-Q}{\varepsilon}) - w_{\varepsilon,Q}(\frac{z}{\varepsilon}).$$
(1.44)

We state the following lemma on the properties of $\varphi_{\varepsilon,Q}$:

Lemma

There exists ε_0 small enough, and ρ_0 large enough, such that for $0 < \varepsilon < \varepsilon_0, \rho > \rho_0$, and $Q \in \Omega$ such that $c\varepsilon \le d(Q, \partial\Omega) \le C\varepsilon |\ln \varepsilon|$, where $c \ge \frac{\rho}{2}$, C > 0 are constants, we have

$$\varphi_{\varepsilon,Q} = -(A_0 + O(\frac{1}{\rho^{\frac{1}{2}}}))K(\frac{z-Q^*}{\varepsilon}) + O(e^{-2\rho}).$$
(1.45)

Back

くロト (過) (目) (日)

$$\begin{cases} (\text{KS1}) & u_t = D_1 \Delta u - \chi \nabla \cdot (u \nabla \phi(v)) & \text{in } \Omega \times (0, +\infty), \\ (\text{KS2}) & v_t = D_2 \Delta v + k(u, v) \text{ in } \Omega \times (0, +\infty), \\ (\text{IC}) & u(x, 0) = u_0 > 0, \quad v(x, 0) = v_0 > 0 \text{ in } \Omega, \\ (\text{BC}) & \frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} \text{ on } \partial \Omega, \end{cases}$$

where D_1 , D_2 and χ are positive constants; ϕ is the so-called sensitivity function which is a smooth function such that $\phi'(r) > 0$ for r > 0; k is a smooth function with $k_u \ge 0$ and $k_v \le 0$.

《曰》《御》《臣》《臣》 [臣]

$$\phi(\mathbf{v}) = \ln \mathbf{v} \text{ and } k(u, \mathbf{v}) = -a\mathbf{v} + bu,$$

$$\begin{cases} D_1 \Delta u - \chi \nabla \cdot (u \nabla \ln \mathbf{v}) = 0 & \text{in } \Omega, \\ D_2 \Delta \mathbf{v} - a\mathbf{v} + bu = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 = \frac{\partial \mathbf{v}}{\partial \nu} & \text{on } \partial \Omega, \\ |\Omega|^{-1} \int_{\Omega} u(x) dx = \bar{u}, \end{cases}$$

$$(u, \mathbf{v}) = (\bar{u}, \bar{v}) \text{ with } \bar{v} = a^{-1} b \bar{u} \text{ is a solution.}$$

$$(1.46)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

The first equation: $\nabla \cdot \{D_1 u \nabla [\ln u - \chi D_1^{-1} \ln v]\} = 0$ and using boundary condition we see that $u = \lambda v^{\frac{\chi}{D_1}}$ for some positive constant λ . Thus (1.46) is equivalent to the following system for (v, λ) :

$$\begin{cases} D_2 \Delta v - av + b\lambda v^{\frac{\lambda}{D_1}} = 0 \text{ in } \Omega, \\ \frac{\partial v}{\partial \nu} = 0 \text{ on } \partial\Omega, \\ |\Omega|^{-1} \int_{\Omega} v(x) dx = \bar{v}. \end{cases}$$
(1.47)

 $p = \frac{\chi}{D_1}, \varepsilon^2 = \frac{D_2}{a}, \gamma = (a^{-1}b\lambda)^{\frac{1}{q-1}}, \text{ and } w(x) = \gamma \cdot v(x),$

$$\varepsilon^{2}\Delta w - w + w^{p} = 0$$
 in Ω , $\frac{\partial w}{\partial \nu} = 0$ on $\partial \Omega$, (1.48)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

Conversely, if w is a positive solution to (1.48) then

$$u(x) = |\Omega| \bar{u} \left(\int_{\Omega} w^{\rho} dx \right)^{-1} w^{\rho}(x)$$

and

$$v(x) = |\Omega| \overline{v} \left(\int_{\Omega} w dx \right)^{-1} w(x)$$

satisfy (1.46) with $p = \frac{\chi}{D_1}, \varepsilon^2 = \frac{D_2}{a}$.

Back

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\begin{cases} u_t = d_1 \Delta u - u + \frac{u^{\rho}}{v^q} & \text{in } \Omega \times [0, T), \\ v_t = d_2 \Delta v - v + \frac{u'}{v^s} & \text{in } \Omega \times [0, T), \\ \frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{on } \partial \Omega \times [0, T), \end{cases}$$
(1.49)

where u, v represent respectively the concentrations of two substances, activator and inhibitor.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\begin{cases} d_1 \Delta u - u + \frac{u^{\rho}}{v^q} = 0 & \text{in } \Omega, \\ d_2 \Delta v - v + \frac{u^{r}}{v^s} = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{on } \partial \Omega. \end{cases}$$
(1.50)

AO, Weiwei Refined Finite-dimensional Reduction

Heuristically, *v* approaches a constant $\xi > 0$ as $d_2 \rightarrow +\infty$, and we are led to the shadow system of (1.50):

$$\begin{cases} d_1 \Delta u - u + \frac{u^{\rho}}{\xi^{q}} = 0 \text{ in } \Omega, \\ -\xi + \xi^{-s} |\Omega|^{-1} \int_{\Omega} u^{r} dx = 0, \\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega. \end{cases}$$
(1.51)

Writing $w(x) = u(x)\xi^{-\frac{q}{p-1}}$, we see that *w* satisfies

$$d_1 \Delta w - w + w^p = 0$$
 in Ω , $\frac{\partial w}{\partial \nu} = 0$ on $\partial \Omega$, (1.52)
Back

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○