Estimates of the mean field equations at critical parameters with integral sources

Ting-Jung Kuo
Taida Institute for Mathematical Sciences (TIMS) (joint work with Prof. Chang-Shou Lin)

France-Taiwan Joint Conference on Nonlinear Partial Differential Equations Oct. 24,2013

Outline:

I. Introduction: The Mean Field Equaton and the Main Theorem
II. Blowup analysis
III. 1st issue: Bubbling Comparison
IV. 2nd issue: Sharp Estimates
V. The Linearized Equation

I. Introduction

We consider the following mean field equation:

$$
\begin{equation*}
\Delta u(x)+\rho\left(\frac{h(x) e^{u(x)}}{\int_{M} h(x) e^{u(x)} d x}-\frac{1}{|M|}\right)=4 \pi \sum_{j=1}^{d} \alpha_{j}\left(\delta_{q_{j}}-\frac{1}{|M|}\right) \text { in } M \tag{1.1}
\end{equation*}
$$

where (M, g) is a compact Riemann surface and $|M|$ is the area.

- Δ stands the Beltrami-Laplacian operator on (M, g).
- $\alpha_{j}>-1, \delta_{q_{j}}$ is the Dirac measure at q_{j} and $\rho \in \mathbb{R}^{+}$.
- $h(x)$ is a positive smooth function on M.
- In geometry, equation (1.1) are related to the well-known Nirenberg problem when $\alpha_{j}=0 \forall j$
- In general α_{j}, it related to the existence of the metric of the positive constant curvature with conic singularities
- Equation (1.1) can also be one of the limiting problem of Chern-Simons-Higgs model.

Question: Given $q_{1}, \ldots, q_{d} \in M$ and $\alpha_{j} \in \mathbb{N}, j=1, \ldots, d$, whether the equation (1.1) has a solution for each $\rho \in \mathbb{R}^{+}$or not.
The following result has been proved:
Theorem A. (Chen-Lin) Suppose $\alpha_{j} \in \mathbb{N}$, and $\chi\left(M \backslash\left\{q_{1}, \ldots, q_{d}\right\}\right) \leq 0$. Then if $\rho \neq 8 m \pi$ for all $m \in \mathbb{N}^{+}$, then the equation (1.1) always has a solution. Here $\chi\left(M \backslash\left\{q_{1}, \ldots, q_{d}\right\}\right)=2-2 g-d$ is the Euler characteristic unmber of $M \backslash\left\{q_{1}, \ldots, q_{d}\right\}$. Sketch:

- Let $K \subset \subset(8 \pi(m-1), 8 \pi m)$ and $\rho \in K$. Then if u_{ρ} is any solution of $(1.1), u_{\rho}$ is uniformly bounded outside vortex points.
- The topology degree d_{ρ} is well-defined.
- When $\chi\left(M \backslash\left\{q_{1}, \ldots, q_{d}\right\}\right) \leq 0$, then $d_{\rho}>0$. This implies the existence result for $\rho \neq 8 m \pi$.
- For $\chi\left(M \backslash\left\{q_{1}, \ldots, q_{d}\right\}\right) \leq 0$, we have

Question: Can we extend Theorem A at $\rho=8 m \pi$ (critical parameters)? Our main theorem gives a positive answer for large ρ :

Theorem 1.1

Let $\alpha_{j} \in \mathbb{N}, \chi\left(M \backslash\left\{q_{1}, \ldots, q_{d}\right\}\right) \leq 0$ and $h(x)$ is a positive C^{2} function. Then there exists $\rho_{0} \in \mathbb{R}$ such that for any $\rho>\rho_{0}$, equation (1.1) has a solution. Here $\rho_{0}=\max _{M}\left(2 K-\ln h+N^{*}\right), K$ is the Gaussian curvature and $N^{*}=4 \pi \sum_{j=1}^{d} \alpha_{j}$.

II. Blowup analysis

Strategy:

- Let $\rho_{k} \in(8 \pi(m-\delta), 8 \pi(m+\delta))$ and $\rho_{k} \rightarrow 8 \pi m$. Let u_{k} be a solution of (1.1) with $\rho=\rho_{k}$. To prove there exists a positive constant C such that

$$
\begin{equation*}
\left|u_{k}\right| \leq C \text { for } M \backslash\left\{q_{1}, \ldots, q_{d}\right\} \tag{2.1}
\end{equation*}
$$

Then after passing limt, u_{k} will converge to u_{∞} which is a solution at $\rho=8 \pi m$.

- Prove by contradiction: Suppose u_{k} blows up somewhere

Definition 2.1

u_{k} is called a sequence of blowup solution of (1.1) which blows up at $S=\left\{p_{1}, \ldots, p_{m}\right\}$ if there exists $\left\{x_{k, i}\right\}_{1 \leq i \leq m}$ such that

$$
x_{k, i} \rightarrow p_{i} \text { and } u_{k}\left(x_{k, i}\right) \rightarrow \infty \text { as } k \rightarrow \infty
$$

Remark 2.2

Let u_{k} be a sequence of blowup solutions. Then

$$
\rho_{k} h e^{u_{k}} \rightarrow \sum_{i=1}^{m} 8 \pi\left(1+\alpha\left(p_{i}\right)\right) \delta_{p_{i}}
$$

in the sense of measure where $\alpha\left(p_{i}\right)=0$ if $p_{i} \neq q$ and $\alpha\left(p_{i}\right)=\alpha_{i}$ if $p_{i}=q_{i}$.

- Suppose there is a sequence of bubbling solutions u_{k} of (1.1) with ρ_{k} and

$$
\lim _{k \rightarrow \infty} \rho_{k}=\rho_{\infty}=8 \pi m
$$

We want to find the sharp estimate of $\left(\rho_{k}-\rho_{\infty}\right)$ and

$$
\rho_{k}-\rho_{\infty}>0
$$

under some suitable condition. This implies there are no blowing up solution provided $\rho_{k}<8 m \pi$.

1st issue: Bubbling Comparison

Our goal here is to do bubbling analysis with Integral Sources.

Definition 3.1

Let p be a blow-up point of u_{k}, and $r>0$ such that in $B_{2 r}(p) \backslash\{p\}$, u_{k} has no blow-up points. We define the local mass by

$$
\begin{equation*}
\rho_{k, p}=\frac{\rho_{k} \int_{B_{r}(p)} h(x) e^{u_{k}} d x}{\int_{M} h(x) e^{u_{k}} d x} \text { and } \rho_{\infty, p}=\lim _{k \rightarrow \infty} \rho_{k, p}=8 \pi(1+\alpha(p)) \tag{3.1}
\end{equation*}
$$

Also, set

$$
\begin{equation*}
\lambda_{k}=u_{k}\left(p_{k}\right)=\max _{B_{r_{0}}(p)} u_{k}(x) \tag{3.2}
\end{equation*}
$$

where p_{k} be the local maximum point of u_{k} near p.

ρ_{k} : Global mass $P_{k i}:$ local mass around $P_{i}, P_{k} \approx \sum_{i=1}^{m} \rho_{i}$

First, we want to show the behavior of u_{k} is

$$
\begin{equation*}
u_{k}(x)=-\lambda_{k, p}+O(1) \text { for }|x-p|=r_{0} \tag{3.3}
\end{equation*}
$$

for each blowup point p of u_{k}. This implies that we can compare any two bubbles. Namely,

$$
\left|\lambda_{k, i}-\lambda_{k, j}\right|=O(1) \text { for } i \neq j
$$

Question 1: $/ s\left|\lambda_{k, i}-\lambda_{k, j}\right|=O(1)$ for $i \neq j$?

Without loss of generality, we may assume $p=0$. For $\alpha=0$ or $\alpha \notin \mathbb{N}$, (3.3) is a consequence of simple blowup property. Simple blowup property means that $u_{k}(x)$ can be locally well-controlled by the entire solutions of its limiting problem. More precisely, define

$$
v_{k}(y)=u_{k}\left(\varepsilon_{k} y\right)-\lambda_{k} \text { for }|y| \leq \frac{1}{\varepsilon_{k}} \text { where } \varepsilon_{k}=e^{-\frac{\lambda_{k}}{2(1+\alpha)}}
$$

After scaling, a subsequence of $v_{k}(y)$ would converge to U in $C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$ where U is an entire solution to

$$
\left\{\begin{array}{l}
\Delta U+\rho_{\infty} h(0)|y|^{2 \alpha} e^{U}=0 \text { in } \mathbb{R}^{2} \tag{3.4}\\
\max U=0
\end{array}\right.
$$

Parajapat and Tarantello have completely classified all solutions of (3.4), that is,

$$
U\left(y ; a_{0}\right)=-2 \ln \left(1+\frac{\rho_{\infty} h(0)}{8(1+\alpha)^{2}}\left|y^{1+\alpha}-a_{0}\right|^{2}\right)
$$

In fact,

$$
\begin{equation*}
a_{0}=\lim _{k \rightarrow+\infty}\left(\frac{p_{k}}{\varepsilon_{k}}\right)^{1+\alpha} . \tag{3.5}
\end{equation*}
$$

In particular, for $\alpha=0$ or $\alpha \notin \mathbb{N}$, we have

$$
\frac{p_{k}}{\varepsilon_{k}} \rightarrow 0
$$

That is

$$
a_{0}=0 .
$$

Bartolucci, Chen, Lin and Tarantello (CPDE 2004) proved the simple blowup property. Theorem B Let 0 be a blowup point of u_{k} with $\alpha(0) \notin \mathbb{N}$. Then

$$
\left|u_{k}(x)-\lambda_{k}+2 \ln \left(1+\frac{\rho_{k} h(0)}{8(1+\alpha)^{2}} e^{\lambda_{k}}|x|^{2(1+\alpha)}\right)\right| \leq C \text { in } B_{r_{0}}(0) .
$$

For $\alpha \in \mathbb{N}$, there are two cases we need to consider :
Case 1: $\frac{\left|p_{k}\right|}{\varepsilon_{k}}=O(1)$ i.e. $\frac{p_{k}}{\varepsilon_{k}}$ converge as $k \rightarrow \infty$.
For $\alpha \in \mathbb{N}$, in general, $a_{0} \neq 0 . U\left(y ; a_{0}\right)$ is no longer radial symmetric and this would cause lots of troubles in our analysis. Although, $U\left(y ; a_{0}\right)$ is not radial symmetric, we still could prove the simple blowup peoperty in this case.

Theorem 3.2

Suppose $\lim _{k \rightarrow+\infty}\left(\frac{p_{k}}{\varepsilon_{k}}\right)^{1+\alpha}=a_{0}$. Then we have

$$
\begin{equation*}
\left|v_{k}(y)-U\left(y ; a_{0}\right)\right| \leq C \text { for all } x \in B_{\frac{1}{\varepsilon_{k}}}(0) . \tag{3.6}
\end{equation*}
$$

That is

$$
\left|u_{k}(x)-\lambda_{k}+2 \ln \left(1+\frac{\rho_{k} h_{0}(0)}{8(1+\alpha)^{2}} e^{\lambda_{k}}\left|x^{1+\alpha}-p_{k}^{1+\alpha}\right|^{2}\right)\right| \leq C \text { for }|x| \leq 1
$$

Case 2: $\lim _{k \rightarrow+\infty} \frac{\left|p_{k}\right|}{\varepsilon_{k}}=+\infty$

- u_{k} is not simply blowing-up at $q=0$. This is a new phenomenon which might occur only at the case when $\alpha \in \mathbb{N}$. However, this phenomenon also appears in the study of $S U(3)$ Toda system. Studying this non-simple blowup case for the scalar equation should be useful for the system case. For this case, we could prove the behavior (3.3) also holds.

We use the following scaling technique: Let $u_{k}(x)$ be a sequence of blowup solutions and set

$$
\begin{equation*}
\delta_{k}=\left|p_{k}\right| . \tag{3.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{\mu}_{k}=\lambda_{k}+2(1+\alpha) \ln \delta_{k}=2(1+\alpha) \ln \frac{\delta_{k}}{\varepsilon_{k}} \rightarrow \infty \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{u}_{k}(y)=u_{k}\left(\delta_{k} y\right)+2(1+\alpha) \ln \delta_{k} \text { for }|y| \leq \frac{1}{\delta_{k}} \tag{3.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta \hat{u}_{k}(y)+\rho_{k}|y|^{2 \alpha} h_{0}\left(\delta_{k} y\right) e^{\hat{u}_{k}(y)}=0 \text { in } B_{\frac{1}{\delta_{k}}}(0) \tag{3.10}
\end{equation*}
$$

Remark 3.3

(i) After scaling, the equation (3.10) has the same vortex point at 0 .
(ii) $\hat{u}_{k}\left(\frac{p_{k}}{\left|p_{k}\right|}\right)=\hat{\mu}_{k} \rightarrow \infty$. $e_{1}=1 \neq 0$ is one of the blowup point of \hat{u}_{k}. Since e_{1} is not the vortex point, e_{1} would carry the local mass 8π.
(iii) From Pohozaev identity, we know that the total mass is $8 \pi(1+\alpha)$, and this implies there exists a blowup set $S=\left\{e_{1}, e_{2}, \ldots, e_{1+\alpha}\right\}$. In fact,

$$
\begin{equation*}
e_{\ell+1}=\exp \left(i \frac{2 \pi}{1+\alpha} \ell\right), \ell=0, \ldots, \alpha \tag{3.11}
\end{equation*}
$$

(iv) $e_{i} \neq 0 \forall i$, that is, \hat{u}_{k} is simple blowup at each e_{i}, meaning

$$
\left|\hat{u}_{k}(y)-\hat{U}(y)\right|=O(1) \text { for }\left|y-e_{i}\right| \leq r_{0}
$$

where

$$
\hat{U}(y)=\ln \frac{e^{\hat{\mu}_{k}}}{\left(1+e^{\hat{\mu}_{k}}\left|y-e_{i}\right|^{2}\right)^{2}}
$$

In case 2 (i.e. $\lim _{k \rightarrow+\infty} \frac{\left|p_{k}\right|}{\varepsilon_{k}}=+\infty$), we have the following theorem:
Theorem 3.4
$\forall y \in B_{\frac{1}{\delta_{k}}}(0) \backslash \cup_{\ell=1}^{1+\alpha} B_{r_{0}}\left(e_{\ell}\right)$, we have

$$
\begin{equation*}
\hat{u}_{k}(y)=-\hat{\mu}_{k}-\sum_{\ell=1}^{1+\alpha} 4 \ln \left|y-e_{\ell}\right|+O(1) . \tag{3.12}
\end{equation*}
$$

By Theorem 3.4, on $\partial B_{\frac{1}{\delta_{k}}}(0)$, we have

$$
\begin{equation*}
\hat{u}_{k}(y)=-\hat{\mu}_{k}+4(1+\alpha) \ln \delta_{k}+O(1) \text { for }|y|=\frac{1}{\delta_{k}} \tag{3.13}
\end{equation*}
$$

and thus we have

$$
\begin{align*}
u_{k}(x) & =2(1+\alpha) \ln \frac{\varepsilon_{k}}{\delta_{k}}+2(1+\alpha) \ln \delta_{k}+O(1) \tag{3.14}\\
& =-\lambda_{k}+O(1) \text { for }|x|=1
\end{align*}
$$

2nd issue: Sharp estimates

After (3.3) is established at each blowup point p, we are able to give a positive answer for Question 1.

Next, we want to discuss the estimate of $\rho_{k}-\rho_{\infty}$. Let $\lambda_{k}=\max _{1 \leq j \leq m} \lambda_{k, j}$ and $\rho_{k, i}$ be the local mass defined by (3.1) at p_{i}. By (3.3), we have good boundary information near each blowup point, then we could localize the problem, namely,

$$
\begin{gather*}
\rho_{k}-\rho_{\infty}=\sum_{i=1}^{m}\left[\rho_{k, i}-8 \pi\left(1+\alpha\left(p_{i}\right)\right)\right]+O\left(e^{-\lambda_{k}}\right), \tag{4.1}\\
\rho_{\infty}=8 \pi \sum_{i=1}^{m}\left(1+\alpha\left(p_{i}\right)\right), \tag{4.2}
\end{gather*}
$$

where $\alpha\left(p_{i}\right)=0$ if $p_{i} \notin\left\{q_{1}, \ldots, q_{d}\right\}$ and $\alpha\left(p_{i}\right)=\alpha_{i}$ if $p_{i}=q_{i}$.

Question 2: Estimate the difference $\rho_{k, p}-\rho_{\infty, p}$
(i) If $p \neq q$ (i.e. $\alpha=0$), then there exists a function $Q(x)$ such that

$$
\nabla Q(p)=0
$$

and the sharp estimate of $\rho_{k, p}-\rho_{\infty, p}$ has already derived by Chen and Lin (CPAM 2002):

Theorem D Let $\left(u_{k}, \rho_{k}\right)$ be a sequence of solutions of (1.1) which blows up at $\left\{p_{1}, \ldots, p_{m}\right\}$. Suppose $\alpha(p)=0$. Then we have

$$
\rho_{k, p}-8 \pi=\frac{16 \pi}{\rho_{\infty} h_{0}(p)}\left(\Delta \ln h(p)-N^{*}+\rho_{\infty}-2 K(p)\right) \varepsilon_{k}^{2}\left|\ln \varepsilon_{k}\right|+O\left(\varepsilon_{k}^{2}\right)
$$

where $K(x)$ denotes the Gaussian curvature and $N^{*}=4 \pi \sum_{j=1}^{d} \alpha_{j}$.
(ii) If p (the blowup point) is one of the vortex point q. Suppose that $\alpha(q) \notin \mathbb{N}$. Then $\nabla Q(p)$ may not 0 . With the help of $a_{0}=0$, Chen and Lin proved

Theorem E (Chen-Lin DCDS-A 2010) Let $\left(u_{k}, \rho_{k}\right)$ be a sequence of solutions of (1.1) which blows up at $\left\{p_{1}, \ldots, p_{m}\right\}$. Suppose $\alpha(p) \notin \mathbb{N}$. Then we have

$$
\rho_{k, q}-8 \pi(1+\alpha(q))=d(q, \alpha)\left(\Delta \ln h(p)-N^{*}+\rho_{\infty}-2 K(q)\right) \varepsilon_{k}^{2}+o(1) \varepsilon_{k}^{2}
$$

where $d(q, \alpha)$ is a positive constant depending on q and α.

Again, for $p=q=0$ and $\alpha \in \mathbb{N}$, we have two cases need to consider, Simple blowup and Non-simple blowup.

Case 1(Simple blowup):

Without loss of generality, we may assume $\nabla Q(0)=\left(Q_{1}(0), 0\right)$. To obtain the formula, we need to approximate the bubbling solution $u_{k}(x)$ (or $v_{k}(z)$): More precisely, we define the error term $\tilde{\eta}_{k}(z)$ by

$$
\tilde{\eta}_{k}(z)=v_{k}(z)-U\left(z ; a_{0}\right)-\left(G_{k}^{*}\left(\varepsilon_{k} z\right)-G_{k}^{*}(0)\right)
$$

We want to prove

$$
\begin{equation*}
\tilde{\eta}_{k}(z)=\varepsilon_{k} Q_{1}(0) \psi_{11}\left(z ; a_{0}\right)+o\left(\varepsilon_{k}\right) . \tag{4.3}
\end{equation*}
$$

where $\psi_{11}\left(z ; a_{0}\right)$ be the solution of

$$
\left\{\begin{array}{l}
\Delta \psi_{11}\left(z ; a_{0}\right)+\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)}\left(\psi_{11}\left(z ; a_{0}\right)+z_{1}\right)=0 \text { in } \mathbb{R}^{2} \tag{4.4}\\
\left|\psi_{11}\left(z ; a_{0}\right)\right|=O\left(\frac{1}{|z|}\right) \text { at } \infty \text { and } \partial_{z}^{1+\alpha} \psi_{11}\left(a_{0}^{\frac{1}{1+\alpha}} ; a_{0}\right)=0
\end{array}\right.
$$

- We need to solve (4.4).

Remark 4.1

(i) For $\alpha \notin \mathbb{N}$, then $\frac{p_{k}}{\varepsilon_{k}} \rightarrow 0$ and thus $a_{0}=0$. The solution $\psi_{11}(z ; 0)$ can be solved explicitly

$$
\begin{equation*}
\psi_{11}(z ; 0)=-\frac{2(1+\alpha)}{\alpha} \frac{z_{1}}{1+\frac{\rho_{k} h_{0}(0)}{8(1+\alpha)^{2}}|z|^{2(1+\alpha)}} \tag{4.5}
\end{equation*}
$$

We see that $\psi_{11}(z ; 0)=O\left(\frac{1}{|z|^{2 \alpha+1}}\right)$.
(ii) However, for $\alpha \in \mathbb{N}$, in general, $\nabla Q(0) \neq 0$ and $a_{0} \neq 0$, thus it is hard to write down the solution explicitly. That means we need to solve (4.4) under $U\left(z ; a_{0}\right)$ is not radial symmetric. Moreover, if $a_{0} \neq 0, \psi_{11}\left(z ; a_{0}\right)$ does not have this decay $O\left(\frac{1}{|z|^{2 \alpha+1}}\right)$. In fact, the decay rate $O\left(\frac{1}{|z|}\right)$ is optimal for $a_{0} \neq 0$.

After we solved the equation (4.4), we could estimate the difference $\rho_{k, q}-8 \pi(1+\alpha(q))$ as follows:

Theorem 4.2

Suppose $\lim _{k \rightarrow+\infty}\left(\frac{p_{k}}{\varepsilon_{k}}\right)^{1+\alpha}=a_{0}$ holds. Then we have

$$
\rho_{k, q}-8 \pi(1+\alpha(q))=\frac{1}{4} F_{1}\left(a_{0} ; \alpha(q)\right)\left(\Delta \ln h(q)-N^{*}+\rho_{\infty}-2 K(q)\right) \varepsilon_{k}^{2}+o(1) \varepsilon_{k}^{2}
$$

where $F_{1}\left(a_{0} ; \alpha(q)\right)>0$.

Case 2(Non-simple blowup):

Since this is a new phenomenon, the method for this case would be different from Case 1. We use not only a good approximation of $\hat{u}_{k}(y)$ inside each simply bubbling regions $B_{r_{0}}\left(e_{i}\right)$ but also the behavior outside the bubbling region $B_{\frac{1}{\delta_{k}}}(0) \backslash \cup_{i=1}^{1+\alpha} B_{r_{0}}\left(e_{i}\right)$. More precisely,

- In $B_{r_{0}}\left(e_{i}\right)$, we need a good approximation, i.e. the error term

$$
\hat{u}_{k}(y)-\hat{U}(y)-\left(\hat{H}(y)-\hat{H}\left(e_{i}\right)\right)=O\left(\hat{\mu}_{k} e^{-\hat{\mu}_{k}}\right)
$$

- For $y \in B_{\frac{1}{\delta_{k}}}(0) \backslash \cup_{\ell=1}^{1+\alpha} B_{r_{0}}\left(e_{\ell}\right)$, we need

$$
\hat{u}_{k}(y)=-\hat{\mu}_{k}-\sum_{\ell=1}^{1+\alpha} 4 \ln \left|y-e_{\ell}\right|+\hat{C}_{k}+O\left(\hat{\mu}_{k} e^{-\hat{\mu}_{k}}\right) .
$$

where \hat{C}_{k} is some constant and \hat{C}_{k} is bounded as $k \rightarrow \infty$.

Theorem 4.3

Suppose that $\lim _{k \rightarrow+\infty} \frac{\left|p_{k}\right|}{\varepsilon_{k}}=+\infty$ for $p=q$. Then

$$
\rho_{k, q}-8 \pi(1+\alpha(q))=C(q, \alpha)\left(\Delta \ln h(q)-N^{*}+\rho_{\infty}-2 K(q)\right) \delta_{k}^{2} \sigma_{k}^{2}\left|\ln \sigma_{k}\right|+O\left(\delta_{k}^{2} \sigma_{k}^{2}\right)
$$ where $C(q, \alpha)>0, \delta_{k}=\left|p_{k}\right|$ and $\sigma_{k}=e^{-\frac{\hat{p}_{k}}{2}}$.

The Linearized equation

- For $\alpha \in \mathbb{N}$, solving the linearized equation (4.4) is the main difference from $\alpha=0$ or $\alpha \notin \mathbb{N}$, and many difficulties come from the linearized equation. Thus, we want to discuss the existence and asymptotic behavior of the linearized equation (4.4).

$$
\left\{\begin{array}{l}
\Delta \psi_{11}\left(z ; a_{0}\right)+\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)}\left(\psi_{11}\left(z ; a_{0}\right)+z_{1}\right)=0 \text { in } \mathbb{R}^{2} \\
\left|\psi_{11}\left(z ; a_{0}\right)\right|=O\left(\frac{1}{|z|}\right) \text { at } \infty \text { and } \partial_{z}^{1+\alpha} \psi_{11}\left(a_{0}^{\frac{1}{1+\alpha}} ; a_{0}\right)=0
\end{array}\right.
$$

Lemma 5.1

There exists a unique solution $\psi_{11}\left(z ; a_{0}\right)$ which depends on a_{0} of the equation (4.4) where $a_{0}^{\frac{1}{1+\alpha}}$ is one of the complex $(1+\alpha)$-roots of a_{0}.

Let $\varphi(z)$ satisfy

$$
\begin{equation*}
\Delta \varphi(z)+\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z)} \varphi(z)=0 \text { in } \mathbb{R}^{2} . \tag{5.1}
\end{equation*}
$$

Define $\varphi_{j}(z), j=0,1,2$ as follows:
$\varphi_{0}(z)=\frac{1-C_{k}\left|z^{1+\alpha}-a_{0}\right|^{2}}{1+C_{k}\left|z^{1+\alpha}-a_{0}\right|^{2}}, \varphi_{1}(z)=\frac{C_{k} \operatorname{Re}\left(z^{1+\alpha}-a_{0}\right)}{1+C_{k}\left|z^{1+\alpha}-a_{0}\right|^{2}}, \varphi_{2}(z)=\frac{C_{k} \operatorname{Im}\left(z^{1+\alpha}-a_{0}\right)}{1+C_{k}\left|z^{1+\alpha}-a_{0}\right|^{2}}$
where $C_{k}=\frac{\rho_{k} h_{0}(0)}{8(1+\alpha)^{2}}$. Then $\varphi_{j}(z)$ are three kernels of $\left(\Delta+\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z)}\right)$ and Del Pino etc. proved the following nondegeneracy result:

Lemma A Let $\varphi(z)$ be any solution of (5.1). Suppose that there exists a constant $C>0$ such that $|\varphi(z)| \leq C(1+|z|)^{\tau}$ for some $\tau \in[0,1)$. Then $\varphi(z)=\sum_{j=0}^{2} c_{j} \varphi_{j}(z)$ for some constants $c_{j}, j=0,1,2$.

Existence:

- The idea is to use Fredholm property in some suitable weighted function space.
- We could prove the non-homogeneous term $\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z)} z_{1}$ is perpendicular to those three kernels $\varphi_{j}(z)$. Then the existence follows.

The crucial part is to derive the asympotic behavior of $\psi_{11}(z)$.
Asymptotic behavior:

- Let $\psi_{11}(z)$ be a solution of (4.4) and $f(z)=\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z)}\left(\psi_{11}(z)+z_{1}\right) \in L^{1}\left(\mathbb{R}^{2}\right), \gamma=\int_{\mathbb{R}^{2}} f(z) d z$, $g(z)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(\ln \left(\frac{|y|}{|y-z|}\right)\right) f(y) d y$.
- First, we have $\psi_{11}(z)=g(z)+C$ for some constant and $g(z)=\frac{1}{2 \pi} \gamma \ln |z|+O(1)$ as $|z| \rightarrow \infty$, meaning, $\psi_{11}(z)=\frac{1}{2 \pi} \gamma \ln |z|+O(1)$ as $|z| \rightarrow \infty$.
- We can show that $\gamma=\int_{R^{2}} \rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z)} \varphi_{0}(z) z_{1} d y=0$. That is, $g(z)=o(1) \ln |z|+O(1)$ as $|z| \rightarrow \infty$ so does $\psi_{11}(z)$.

Asymptotic behavior:

- Consider the Kelvin transformation of $g(z)$. That is $\hat{g}(z)=g\left(\frac{z}{|z|^{2}}\right)$. Then we can show that $\hat{g}(z)$ is C^{1} at $z=0$ which implies $g(z)=C+O\left(\frac{1}{|z|}\right)$ as $|z| \rightarrow \infty$.
Thus $\psi_{11}(z)=C+O\left(\frac{1}{|z|}\right)$ as $|z| \rightarrow \infty$.
- By considering $\psi_{11}(z)+C \varphi_{0}$, we have $\psi_{11}(z)=O\left(\frac{1}{|z|}\right)$ for $|z| \rightarrow+\infty$.
- Choose C_{1} and C_{2} such that $\psi_{11}(z)+C_{1} \varphi_{1}(z)+C_{2} \varphi_{2}(z)$ has the property $\partial_{z}^{1+\alpha} \psi_{11}\left(a_{0}^{\frac{1}{1+\alpha}} ; a_{0}\right)=0$.

Uniqueness:

- Uniqueness is easy from the condition $\left|\psi_{11}\left(z ; a_{0}\right)\right|=O\left(\frac{1}{|z|}\right)$ at ∞ and $\partial_{z}^{1+\alpha} \psi_{11}\left(a_{0}^{\frac{1}{1+\alpha}} ; a_{0}\right)=0$.
- The difficulties coming from $a_{0} \neq 0$ and $\nabla Q(0) \neq 0$ are not only the existence of the solution to the linearized equation but also in the sharp estimates. We explain it as follows: Recall

$$
\begin{equation*}
\tilde{\eta}_{k}(z)=\varepsilon_{k} \partial_{1} Q(0) \psi_{11}\left(z ; a_{0}\right)+o\left(\varepsilon_{k}\right) \tag{5.2}
\end{equation*}
$$

Lemma 5.2

Let $\Omega_{k}=B_{\frac{r_{0}}{\varepsilon_{k}}}(0)$

$$
\rho_{k, 0}-8 \pi(1+\alpha)=\int_{\Omega_{k}} \varphi_{0}(z) \Delta \tilde{\eta}_{k}(z)-\tilde{\eta}_{k}(z) \Delta \varphi_{0}(z) d z+o\left(\varepsilon_{k}^{2}\right) .
$$

After long computation, we have

$$
\begin{aligned}
& \int_{\Omega_{k}} \varphi_{0}(z) \Delta \tilde{\eta}_{k}(z)-\tilde{\eta}_{k}(z) \Delta \varphi_{0}(z) d z \\
& =\int_{\Omega_{k}}-\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z)\left[\frac{\varepsilon_{k}^{2}}{2} \nabla^{2} Q(0) z^{2}\right. \\
& \left.+\frac{1}{2}\left(\tilde{\eta}_{k}(z)+\varepsilon_{k} Q_{1}(0) z_{1}\right)^{2}\right] d z+o\left(\varepsilon_{k}^{2}\right)
\end{aligned}
$$

Then by (5.2)

$$
\left(\tilde{\eta}_{k}(z)+\varepsilon_{k} Q_{1}(0) z_{1}\right)^{2}=\left(\left(\psi_{11}\left(z ; a_{0}\right)+z_{1}\right)\right)^{2}\left(Q_{1}(0)\right)^{2} \varepsilon_{k}^{2}+o(1) \varepsilon_{k}^{2}
$$

we have

$$
\begin{aligned}
& \int_{\Omega_{k}} \varphi_{0}(z) \Delta \tilde{\eta}_{k}(z)-\tilde{\eta}_{k}(z) \Delta \varphi_{0}(z) d z \\
& =\int_{\Omega_{k}}-\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z)\left[\frac{\varepsilon_{k}^{2}}{2} \nabla^{2} Q(0) z^{2}\right. \\
& \left.+\frac{1}{2}\left(\left(\psi_{11}\left(z ; a_{0}\right)+z_{1}\right)\right)^{2}\left(Q_{1}(0)\right)^{2} \varepsilon_{k}^{2}\right] d z+o\left(\varepsilon_{k}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \int_{\Omega_{k}}-\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z) \frac{1}{2} \nabla^{2} Q(0) z^{2} d z \tag{i}\\
& =\frac{1}{4} F_{1}\left(a_{0} ; \alpha\right) \Delta Q(0)+o(1)
\end{align*}
$$

where

$$
F_{1}\left(a_{0} ; \alpha\right)=\int_{R^{2}}-\rho_{\infty} h_{0}(0)|z|^{2 \alpha+2} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z) d z>0
$$

and

$$
\Delta Q(0)=\Delta \ln h(q)-N^{*}+\rho_{\infty}-2 K(q)
$$

(ii) It is easy to see that

$$
\begin{aligned}
& \int_{\Omega_{k}}-\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z) \frac{1}{2}\left(\left(\psi_{11}\left(z ; a_{0}\right)+z_{1}\right) Q_{1}(0)\right)^{2} d z \\
& =E\left(a_{0} ; \alpha\right)\left(Q_{1}(0)\right)^{2}+o(1)
\end{aligned}
$$

where

$$
E\left(a_{0} ; \alpha\right)=\frac{1}{2} \int_{\mathbb{R}^{2}}-\rho_{\infty} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z)\left(\psi_{11}\left(z ; a_{0} ; \alpha\right)+z_{1}\right)^{2} d z
$$

Thus, we have

$$
\begin{aligned}
& \rho_{k, 0}-8 \pi(1+\alpha) \\
= & \left\{\frac{1}{4} F_{1}\left(a_{0} ; \alpha\right)\left(\Delta \ln h(q)-N^{*}+\rho_{\infty}-2 K(q)\right)+E\left(a_{0} ; \alpha\right)\left(Q_{1}(0)\right)^{2}\right\} \varepsilon_{k}^{2}+o(1) \varepsilon_{k}^{2} .
\end{aligned}
$$

Remark 5.3

(i) If $\alpha=0$, then we know that $\nabla Q(0)=0$. Thus $E\left(a_{0} ; \alpha\right)\left(Q_{1}(0)\right)^{2}=0$.
(ii) If $\alpha \notin \mathbb{N}$, then $a_{0}=0$, and it is easy to compute $E(0 ; \alpha)=0$.
(iii) In our case, that is, $\alpha \in \mathbb{N}$. Then $\nabla Q(0)$ and a both may not be 0 . Thus we meet the difficulty that how to compute the integral

$$
E\left(a_{0} ; \alpha\right)=\frac{1}{2} \int_{\mathbb{R}^{2}}-\rho_{\infty} h_{0}(0)|z|^{2 \alpha} e^{U\left(z ; a_{0}\right)} \varphi_{0}(z)\left(\psi_{11}\left(z ; a_{0} ; \alpha\right)+z_{1}\right)^{2} d z
$$

which involving the solution of linearized equation.

Without loss of generality, we may assume that $a \in \mathbb{R}$. We need to transform the integral $E(a ; \alpha)$ on entire space into an integral at infinity. Write

$$
\psi_{11}(z ; a ; \alpha)=A_{1}(a ; \alpha) \frac{z_{1}}{|z|^{2}}+B_{1}(a ; \alpha) \frac{z_{2}}{|z|^{2}}+O\left(\frac{1}{|z|^{2}}\right) \text { as }|z| \rightarrow \infty
$$

Let $\lambda \in \mathbb{R}$ and

$$
U(z ; a ; \alpha ; \lambda)=\lambda-2 \ln \left(1+\frac{\rho_{\infty} h(0)}{8(1+\alpha)^{2}} e^{\lambda}\left|z^{1+\alpha}-a\right|^{2}\right)
$$

Then $U(z ; a ; \alpha ; \lambda)$ also satisfy

$$
\Delta U(z ; a ; \alpha ; \lambda)+\rho_{\infty} h(0)|z|^{2 \alpha} e^{U(z ; a ; \alpha ; \lambda)}=0 .
$$

Let $\psi_{11}(z ; a ; \alpha ; \lambda)$ be the corresponding solution to

$$
\left\{\begin{array}{l}
\Delta \psi_{11}(z ; a ; \alpha ; \lambda)+\rho_{k} h_{0}(0)|z|^{2 \alpha} e^{U(z ; a ; \alpha ; \lambda)}\left(\psi_{1 \ell}(z ; a ; \alpha ; \lambda)+z_{1}\right)=0 \text { in } \mathbb{R}^{2} \\
\left|\psi_{11}(z ; a ; \alpha ; \lambda)\right|=O\left(\frac{1}{|z|}\right) \text { at } \infty \text { and } \partial_{z}^{1+\alpha} \psi_{1 \ell}\left(a^{\frac{1}{1+\alpha}} ; a ; \alpha ; \lambda\right)=0
\end{array}\right.
$$

Then

$$
\psi_{11}(z ; a ; \alpha ; 0)=\psi_{11}(z ; a ; \alpha)
$$

and

$$
\psi_{11}(z ; a ; \alpha ; \lambda)=e^{-\frac{\lambda}{2(1+\alpha)}} \psi_{11}\left(e^{\frac{\lambda}{2(1+\alpha)}} z ; e^{\frac{\lambda}{2}} a ; \alpha ; 0\right) .
$$

Thus

$$
\psi_{11}(z ; a ; \alpha ; \lambda)=e^{-\frac{\lambda}{1+\alpha}} A_{1}\left(e^{\frac{\lambda}{2}} a ; \alpha\right) \frac{z_{1}}{|z|^{2}}+e^{-\frac{\lambda}{1+\alpha}} B_{1}\left(e^{\frac{\lambda}{2}} a ; \alpha\right) \frac{z_{2}}{|z|^{2}}+O\left(\frac{1}{|z|^{2}}\right)
$$

as $|z| \rightarrow \infty$.

Then we have the following lemma:

Lemma 5.4

$$
\begin{aligned}
E(a ; \alpha) & =\frac{1}{2} \int_{\mathbb{R}^{2}}-\rho_{\infty} h_{0}(0)|z|^{2 \alpha} e^{U(z ; a)} \varphi_{0}(z)\left(\psi_{11}(z ; a ; \alpha)+z_{1}\right)^{2} d z \\
& =\frac{1}{2} \lim _{R \rightarrow \infty} \int_{\partial B_{R}} z_{1}\left(\frac{\partial}{\partial \nu} \partial_{\lambda} \psi_{11}(z ; a ; \alpha ; \lambda)\right)-\left.\partial_{\lambda} \psi_{11}(z ; a ; \alpha ; \lambda)\left(\frac{\partial}{\partial v} z_{1}\right) d \sigma\right|_{\lambda=0} \\
& =\frac{\pi}{4}\left[A_{1}(a ; \alpha)-\frac{2}{1+\alpha}\left(\partial_{a} A_{1}(a ; \alpha)\right) a\right]
\end{aligned}
$$

So we have to study the asymptotic behavior in a deeper way, namely, we need to find out the leading coefficient $A_{1}(a ; \alpha)$. More precisely, we have

Lemma 5.5

(i) For $\alpha=1, A_{1}(a ; 1)=4 a$ and $B_{1}(a ; 1)=0$.
(ii) For $\alpha>1, A_{1}(a ; \alpha)=B_{1}(a ; \alpha)=0$.

From Lemma 5.4 and Lemma 5.5, we conclude that

$$
E(a ; \alpha)=0
$$

Thus

$$
\begin{aligned}
& \rho_{k, 0}-8 \pi(1+\alpha) \\
= & \frac{1}{4} F_{1}(a ; \alpha)\left(\Delta \ln h(q)-N^{*}+\rho_{\infty}-2 K(q)\right) \varepsilon_{k}^{2}+o(1) \varepsilon_{k}^{2}
\end{aligned}
$$

Another delicate issue: To locate the position of a_{0}
One of the most interesting examples is the following: We consider u_{k} to be a blowup solution satisfying

$$
\begin{equation*}
\Delta u_{k}+e^{u_{k}}=4 \pi \sum_{i=1}^{N} \alpha_{k, i} \delta_{q_{i}} \text { in } T \tag{5.3}
\end{equation*}
$$

where $T=\mathbb{C} / \Lambda$ and $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$.

$$
\rho_{k}=4 \pi \sum_{i=1}^{N} \alpha_{k, i}
$$

If $\alpha_{k, i}=\alpha_{i}$ and $\sum_{i=1}^{N} \alpha_{i}$ is even integer, then u_{k} is simple blowup and $a_{0}=0$.
Question: In general, for $4 \pi \sum_{i=1}^{N} \alpha_{k, i} \rightarrow 8 \pi m$, whether u_{k} is simple blowup or not. If u_{k} is simple blowup, can we determine the position of a_{0} ?

Thank you very much!

