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A Hamilton-Jacobi approach for a model of population structured by space and trait

Introduction

Darwinian evolution of a structured population density

We study the
Darwinian evolution

of a population
structured by
phenotypical traits,
and the position in
space,

under selection and
mutation
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Introduction

Example of evolution: creation of antibiotic resistance of
bacteria under drug selection

Morbidostat : a selective pressure is applied continuously to the
bacterial population. It automatically tunes drug concentration
such that a constant growth rate is maintained.
Following evolution of bacterial antibiotic resistance in real time, Rosenthal et Elowitz, Nature Genetics

2012
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A Hamilton-Jacobi approach for a model of population structured by space and trait

Introduction

The latitudinal cline in wing size of Drosophila subobscura

(a) Drosophila subobscura from Barcelona, Spain (39 latitude, left) and
Aarhus, Denmark (56 latitude, right) demonstrating the latitudinal cline
in wing size that has evolved in the native European range, and also in
the introduced North and South American ranges. (b) Latitudinal clines
in wing size in different regions.
Figure from: Effects of exotic species on evolutionary diversification, Vellend et al. 2007.

Rapid Evolution of a Geographic Cline in Size in an Introduced Fly, Hulley et al. 2000.
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Introduction

Our objective: describing the spatial invasion and the
phenotypical distribution of the population

An approach based on Hamilton-Jacobi equations has been used to
study

models structured only by a space variable (as KPP type
equations) and helps to describe the invasion scenarios: Barles,
Evans, Majda, Souganidis,...(89-94)

models structured only by phenotypical traits and helps to
understand the selection of some particular traits: Barles,
Champagnat, Diekmann, Jabin, Lorz, M., Mischler, Perthame
(since 2004).

Here, we try to combine these two methods to study models
structured by a phenotypical trait and a space variable.
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Model

A model structured by a phenotypical trait and a space
variable


∂tn = ∆xn + α∆θn + r n [a(x , θ)− ρ], (x , θ) ∈ Rd ×Θ,

∂n
∂n

= 0 on ∂Θ,

ρ(t, x) =
∫

Θ n(t, x , θ)dθ, n(0, x , θ) = n0(x , θ).

x ∈ Rd : position in space

θ ∈ Θ: phenotypical trait
n(t, x , θ): density of trait θ
at position x

ra(x , θ): intrinsic growth
rate
r : death rate due to
competition (constant)
α: mutation rate (constant)
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Model

What we expect ?

In general we expect that the population propagates in the
x-direction and attains a certain distribution in θ in the invaded
parts.

Related works:

L. Desvillettes, R. Ferriere and C. Prevost (2004)
N. Champagnat and S. Méléard (2007)
A. Arnold, L. Desvillettes, and C. Prevost (2012)

7 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Model

What we expect ?

In general we expect that the population propagates in the
x-direction and attains a certain distribution in θ in the invaded
parts.

Related works:

L. Desvillettes, R. Ferriere and C. Prevost (2004)
N. Champagnat and S. Méléard (2007)
A. Arnold, L. Desvillettes, and C. Prevost (2012)

7 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Model

Other related works:

O. Benichou, V. Calvez, N. Meunier and R. Voituriez (2012)
E. Bouin, V. Calvez, N. Meunier, S. M., B. Perthame, G.
Raoul and R. Voituriez (2012): A formal result for the invasion
of cane toads using the Hamilton-Jacobi approach

Alfaro, Coville, Raoul (2013) : Existence of propagating fronts
with a(x , θ) = b(x · e − θ) in the form of

n(t, x , θ) = u(x · e − ct, θ), c ≥ c∗.

H. Berestycki and G. Chapuisat, preprint: a local model.
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Model

Rescaling


ε ∂tnε = ε2 ∆xnε + α∆θnε + r nε (a(x , θ)− ρε), (x , θ) ∈ Rd ×Θ,

∂nε
∂n

= 0 on ∂Θ,

ρε(t, x) =
∫

Θ nε(t, x , θ)dθ, nε(0, x , θ) = n0
ε(x , θ).

ε is small:

small diffusion in space and long time.
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Model

Lemma (Eigenvalue or cell problem)

For all x ∈ Rd , there exists a unique eigenvalue H(x) corresponding
to a strictly positive eigenfunction Q(x , ·) which satisfies

α∆θQ + ra(x , θ)Q = H(x)Q

∂Q(x , ·)
∂n

= 0 on ∂Θ.

The eigenvector is unique under the additional normalization
assumption ∫

Θ
Q(x , θ)dθ = 1.

Moreover, H and Q are smooth functions.
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Results

Some assumptions

−Mx2 + B ≤ a(x , θ) ≤ a∞

ρ0(x) ≤ a∞

exp
(
−C1(x)

ε

)
≤ nε(0, x , θ) ≤ exp

(
C2
ε

)
and we use the Hopf-Cole transformation

nε = exp
(uε
ε

)
.
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Results

Theorem (Asymptotic behavior)

(i) The family (uε)ε converges locally uniformly to
u : [0,∞)× R→ R the unique viscosity solution of{

max (∂tu − |∇xu|2 − H, u) = 0, in (0,∞)× Rd ,

u(0, x) = u0(x).

(ii) Uniformly on compact subsets of Int {u < 0} ×Θ,
limε→0 nε = 0,

(iii) There exists C > 1 such that, uniformly on compact subsets of
Int ({u(t, x) = 0} ∩ {H(x) > 0}),

lim inf
ε→0

ρε(t, x) ≥ H(x)

rC
.
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Results

Theorem (Convergence of nε in a particular case)

Let a(x , θ) = a(θ)− b(x). Then Q(x , θ) = Q(θ). Let the initial
data be

nε(t = 0, x , θ) = mε(x)Q(θ).

Then
(i) For all t > 0 and (x , θ) ∈ R×Θ,

nε(t, x , θ) = mε(t, x)Q(θ).

(ii) For all (t, x , θ) ∈ {u(t, x) = 0} ×Θ,

lim
ε→0

nε(t, x , θ) =
H
r
Q(θ).
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Results

Some qualitative properties
Let a(x , θ) = a(θ).

=⇒ H(x) = H, Q(x , θ) = Q(θ).

Propagation in the x-direction:

max
(
∂tu − |∇xu|2 − H, u

)
= 0.

Speed of propagation in space, starting from an initial data with
compact support:

c = 2
√
H.

The phenotypical distribution in Int{u(t, x) = 0} (at the back of
the front):

nε(t, x , θ) ≈ H
r
Q(θ).
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Results

A possible explanation for the case of Drosophila Subobscura

Let

r = 1, a(x , θ) = A− D (θ − bx)2, x , θ ∈ R.

Then

Q(x , θ) = C exp

(
1
2

√
D
α

(θ − bx)2

)
, H(x) = A−

√
Dα.

While the mutation rate α is small, the population
concentrates on the line θ = bx .
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Heuristics

Some heuristics
We use the following ansatz

nε = exp
(
uε(t, x , θ)

ε

)
.

∂tuε = ε∆xuε +
α

ε
∆θuε + |∇xuε|2 +

α

ε2
|∇θuε|2 + r(a(x , θ)− ρε)

A formal expansion of uε:

uε(t, x , θ) = u0(t, x , θ) + εu1(t, x , θ) + O(ε2).

We replace this in the equation and keeping the terms of order ε−2

we obtain, for all (t, x , θ),

|∇θu0(t, x , θ)|2 = 0.
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Heuristics

This suggests that

u0(t, x , θ) = u0(t, x).

Next, we keep the zero order terms (terms with coefficient ε0):

−α∆θu1 − α|∇θu1|2 − ra(x , θ) =
[
−∂tu0 + |∇xu0|2 − rρ0

]
(t, x).

and u1 satisfies the Neumann boundary condition.

⇓[
∂tu0 − |∇xu0|2 + rρ0

]
(t, x) = H(x),

u1(t, x , θ) = lnQ(x , θ) + µ(t, x).
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Heuristics

We can now write

nε(t, x , θ) ≈ e
u0(t,x)
ε

+u1(t,x ,θ), ρε(t, x) ≈ eµ(t,x)+
u0(t,x)
ε .

Therefore

ρ0 ≤ C =⇒ u0 ≤ 0, and ρ0 > 0 =⇒ u0 = 0.

We deduce that
ρ0(t, x) = 0 =⇒ ∂tu0(t, x)− |∇xu0|2(t, x)− H(x) = 0,

ρ0(t, x) > 0 =⇒
u0(t, x) = 0 and

r exp(µ(t, x)) = rρ0(t, x) = H(x)
,

⇓
max

(
u0 , ∂tu0 − |∇xu0|2 − H(x)

)
= 0,
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Heuristics

Therefore, we expect that

nε(t, x , θ) −→

{
H(x)

r Q(x , θ) if u0(t, x) = 0
0 if u0(t, x) < 0

with 
α∆θQ + ra(x , θ)Q = H(x)Q.

∂Q(x , ·)
∂n

= 0 on ∂Θ,

∫
Θ
Q(x , θ)dθ = 1.

and
max

(
u0 , ∂tu0 − |∇xu0|2 − H(x)

)
= 0.
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Numerical results

The numerical resolution of the main problem

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.94

0.96

0.98

1

1.02

1.04

The values of ρε(x) and H(x)
r

The trait distribution at the edge and at the back of the
front that we compare to Q
The density nε(t, x , θ)

α = 1, r = 2, a1(θ) =
1
4

+
θ

2
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Numerical results

The numerical resolution of the main problem
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Numerical results

The numerical resolution of the main problem
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Outlines of the proof

Difficulties

We don’t have a priori Lipschitz estimate in x

No maximum principle due to the nonlocal term

Main elements to prove the convergence to the
Hamilton-Jacobi equation:

Regularizing effect in θ:
Bernstein method

Convergence to the effective Hamilton-Jacobi equation:
half-relaxed limits method for viscosity solutions
perturbed test functions
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Outlines of the proof

Outlines of the proof

Theorem (Convergence to the Hamilton-Jacobi equation)

Under the previous assumptions and

lim
ε→0

uε(0, x , θ) = u0(x),

as ε vanishes, (uε)ε converges locally uniformly to u the unique
viscosity solution of

max
(
∂tu − |∇xu|2 − H, u

)
= 0, in (0,∞)× Rd

u(0, x) = u0(x).
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Outlines of the proof

By replacing
nε = exp

(uε
ε

)
.

in the equation on nε we obtain

∂tuε = ε∆xuε + α
ε∆θuε + |∇xuε|2 + α

ε2
|∇θuε|2 + r(a(x , θ)− ρε)

∂uε(t, x , ·)
∂n

= 0 on ∂Θ,

uε(0, x , θ) = u0
ε (x , θ).
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Outlines of the proof

Theorem (Regularity results for uε)

Under the previous assumptions, the family (uε)ε>0 is locally
uniformly bounded in R+ × Rd ×Θ.
Let γ > 0 and

vε :=
√

C (t) + γ2 − uε.

Then,

|∇θvε| ≤
ε

2
√
αt

+

(
rC0ε

2

αγ

) 1
3

.

In particular, this gives a regularizing effect in θ for all t > 0, and
the fact that |∇θvε| → 0 locally uniformly as ε goes to 0.
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Outlines of the proof

Bounds on ρε and uε

ε∂tρε = ε2∆xρε + r
(∫

Θ nε(t, x , θ)a(x , θ)dθ − ρ2
ε

)
≤ ε2∆xρε + rρε (a∞ − ρε) .

⇓
ρε ≤ a∞,

and by maximum/comparison principle

−r(M|x |2 + B)t − C1(x)− rεMt2 ≤ uε(t, x , θ) ≤ C2 + ra∞t.

Recall (assumptions):

−Mx2 + B ≤ a(x , θ)− a∞ ≤ 0,

ρ0
ε(x) ≤ a∞, −C1(x) ≤ uε(0, x , θ) ≤ C2.
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Outlines of the proof

Regularity in θ

Let
vε :=

√
C2 + ra∞t + γ2 − uε ≥ γ.

We replace this in the equation on uε and obtain

∂tvε = ε∆xvε + α
ε∆θvε +

(
ε
vε − 2vε

)
|∇xvε|2

+
(
α
εvε −

2αvε
ε2

)
|∇θvε|2 − 1

2vε r(a(x , θ)− a∞ − ρε).

We differentiate this equation with respect to θ and multiply it by
by ∇θvε
|∇θvε| to obtain
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Outlines of the proof

∂t |∇θvε| ≤ ε∆x |∇θvε|+ α
ε∆θ|∇θvε|+ 2

(
ε
vε − 2vε

)
∇xvε · ∇x |∇θvε|

+2
(
α
εvε −

2αvε
ε2

)
∇θvε · ∇θ|∇θvε|+

(
− ε

v2ε
− 2
)
|∇xvε|2|∇θvε|

+
(
− α
εv2ε
− 2α

ε2

)
|∇θvε|3 + r |∇θa(x ,θ)|

2vε ,

Therefore, wε := |∇θvε| is a subsolution of

∂twε ≤ ε∆xwε + α
ε∆θwε + 2

(
ε
vε − 2vε

)
∇xvε · ∇xwε

+2
(
α
εvε −

2αvε
ε2

)
∇θvε · ∇θwε−2α

ε2
|wε|3 + rC0

2γ .
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We can find a supersolution for the previous equation

z(t) :=
ε

2
√
αt

+

(
rC0ε

2

αγ

) 1
3

.

Note that
z(0) =∞.

By the comparison principle (with Neumann boundary condition):

|∇θvε| = wε ≤
ε

2
√
αt

+

(
rC0ε

2

αγ

) 1
3

.

In particular, for all t > 0, as ε→ 0,

|∇θvε(t, x , θ)| → 0, ⇒ |∇θuε(t, x , θ)| → 0.
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Convergence to the Hamilton-Jacobi equation
Let’s first suppose that we also have regularity estimates in x , such
that we know a priori that

uε −→ u, locally uniformly as ε→ 0.

From the previous estimate in θ we deduce that

u(t, x , θ) = u(t, x).

Let’s also suppose that

ρε(t, x) −→ ρ(t, x), locally uniformly as ε→ 0.

Then, we prove that u is a viscosity solution of

∂tu − |∇xu|2 − H + rρ = 0.

31 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

Convergence to the Hamilton-Jacobi equation
Let’s first suppose that we also have regularity estimates in x , such
that we know a priori that

uε −→ u, locally uniformly as ε→ 0.

From the previous estimate in θ we deduce that

u(t, x , θ) = u(t, x).

Let’s also suppose that

ρε(t, x) −→ ρ(t, x), locally uniformly as ε→ 0.

Then, we prove that u is a viscosity solution of

∂tu − |∇xu|2 − H + rρ = 0.

31 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

Convergence to the Hamilton-Jacobi equation
Let’s first suppose that we also have regularity estimates in x , such
that we know a priori that

uε −→ u, locally uniformly as ε→ 0.

From the previous estimate in θ we deduce that

u(t, x , θ) = u(t, x).

Let’s also suppose that

ρε(t, x) −→ ρ(t, x), locally uniformly as ε→ 0.

Then, we prove that u is a viscosity solution of

∂tu − |∇xu|2 − H + rρ = 0.

31 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

Perturbed test function method

Let ϕ : R+ × Rd be a smooth function such that u − ϕ has a
maximum at (t0, x0).
Then define

ϕε(t, x , θ) = ϕ(t, x) + εχ(x , θ).

with χ(x , θ) = lnQ(x , θ) and

−α∆θQ = a(x , θ)Q − H(x)Q.

Then, for all ε > 0, there exists (tε, xε, θε) such that uε − ϕε has a
maximum at this point and

(tε, xε)→ (t0, x0), as ε→ 0.
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By the viscosity sub-solution criterion, at the point (tε, xε, θε),

∂tϕε ≤ ε∆xϕε +
α

ε
∆θϕε + |∇xϕε|2 +

α

ε2
|∇θϕε|2 + r(a(xε, θε)− ρε)

⇓

∂tϕ(tε, xε) −ε∆x (ϕ+ εχ) (tε, xε, θε)− |∇x (ϕ+ εχ) |2(tε, xε, θε)

≤ α∆θχ(xε, θε) + α|∇θχ|2(xε, θε) + r(a(xε, θε)− ρε(tε, xε))

= H(xε)− rρε(tε, xε).

⇒ as ε→ 0,

∂tϕ(t0, x0)− |∇xϕ|2 ≤ H(x0)− rρ(t0, x0).

⇒ u is a subsolution. (Similar argument for supersolution).

33 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

By the viscosity sub-solution criterion, at the point (tε, xε, θε),

∂tϕε ≤ ε∆xϕε +
α

ε
∆θϕε + |∇xϕε|2 +

α

ε2
|∇θϕε|2 + r(a(xε, θε)− ρε)

⇓

∂tϕ(tε, xε) −ε∆x (ϕ+ εχ) (tε, xε, θε)− |∇x (ϕ+ εχ) |2(tε, xε, θε)

≤ α∆θχ(xε, θε) + α|∇θχ|2(xε, θε) + r(a(xε, θε)− ρε(tε, xε))

= H(xε)− rρε(tε, xε).

⇒ as ε→ 0,

∂tϕ(t0, x0)− |∇xϕ|2 ≤ H(x0)− rρ(t0, x0).

⇒ u is a subsolution. (Similar argument for supersolution).

33 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

By the viscosity sub-solution criterion, at the point (tε, xε, θε),

∂tϕε ≤ ε∆xϕε +
α

ε
∆θϕε + |∇xϕε|2 +

α

ε2
|∇θϕε|2 + r(a(xε, θε)− ρε)

⇓

∂tϕ(tε, xε) −ε∆x (ϕ+ εχ) (tε, xε, θε)− |∇x (ϕ+ εχ) |2(tε, xε, θε)

≤ α∆θχ(xε, θε) + α|∇θχ|2(xε, θε) + r(a(xε, θε)− ρε(tε, xε))

= H(xε)− rρε(tε, xε).

⇒ as ε→ 0,

∂tϕ(t0, x0)− |∇xϕ|2 ≤ H(x0)− rρ(t0, x0).

⇒ u is a subsolution. (Similar argument for supersolution).

33 / 35



A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

Difficulties

We don’t have a priori Lipschitz estimate in x :

We use the so called half-relaxed limits method for viscosity
solutions to pass to the limit.

We don’t have a priori convergence of ρε:

We only prove

max(∂tu − |∇xu|2 − H, u) = 0, in (0,∞)× Rd .
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Thank you for your attention !
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