A Hamilton-Jacobi approach for a model of population structured by space and trait

Sepideh Mirrahimi

CNRS, IMT, Toulouse, France

Joint work with Emeric Bouin (ENS de Lyon),

Taipei, Octobre 21-25, 2013

Darwinian evolution of a structured population density

- We study the Darwinian evolution
 - of a population structured by phenotypical traits, and the position in space,
 - under selection and mutation

Example of evolution: creation of antibiotic resistance of bacteria under drug selection

Morbidostat : a selective pressure is applied continuously to the bacterial population. It automatically tunes drug concentration such that a constant growth rate is maintained.

Following evolution of bacterial antibiotic resistance in real time, Rosenthal et Elowitz, Nature Genetics

2012

The latitudinal cline in wing size of Drosophila subobscura

(a) Drosophila subobscura from Barcelona, Spain (39 latitude, left) and Aarhus, Denmark (56 latitude, right) demonstrating the latitudinal cline in wing size that has evolved in the native European range, and also in the introduced North and South American ranges. (b) Latitudinal clines in wing size in different regions.

Figure from: Effects of exotic species on evolutionary diversification, Vellend et al. 2007.

Rapid Evolution of a Geographic Cline in Size in an Introduced Fly, Hulley et al. 2000.

Our objective: describing the spatial invasion and the phenotypical distribution of the population

An approach based on Hamilton-Jacobi equations has been used to study

 models structured only by a space variable (as KPP type equations) and helps to describe the invasion scenarios: Barles, Evans, Majda, Souganidis,...(89-94)

Our objective: describing the spatial invasion and the phenotypical distribution of the population

An approach based on Hamilton-Jacobi equations has been used to study

- models structured only by a space variable (as KPP type equations) and helps to describe the invasion scenarios: Barles, Evans, Majda, Souganidis,...(89-94)
- models structured only by phenotypical traits and helps to understand the selection of some particular traits: Barles, Champagnat, Diekmann, Jabin, Lorz, M., Mischler, Perthame (since 2004).

Our objective: describing the spatial invasion and the phenotypical distribution of the population

An approach based on Hamilton-Jacobi equations has been used to study

- models structured only by a space variable (as KPP type equations) and helps to describe the invasion scenarios: Barles, Evans, Majda, Souganidis,...(89-94)
- models structured only by phenotypical traits and helps to understand the selection of some particular traits: Barles, Champagnat, Diekmann, Jabin, Lorz, M., Mischler, Perthame (since 2004).

Here, we try to combine these two methods to study models structured by a phenotypical trait and a space variable.

- Model

.

A model structured by a phenotypical trait and a space variable

$$\begin{cases} \partial_t n = \Delta_x n + \alpha \Delta_\theta n + r n [a(x, \theta) - \rho], & (x, \theta) \in \mathbb{R}^d \times \Theta, \\ \\ \frac{\partial n}{\partial n} = 0 \text{ on } \partial\Theta, \\ \\ \rho(t, x) = \int_{\Theta} n(t, x, \theta) d\theta, & n(0, x, \theta) = n^0(x, \theta). \end{cases}$$

• $x \in \mathbb{R}^d$: position in space

- ra(x, θ): intrinsic growth rate
- $\theta \in \Theta$: phenotypical trait
- n(t, x, θ): density of trait θ at position x
- r: death rate due to competition (constant)
- α : mutation rate (constant)

Model

What we expect ?

In general we expect that the population propagates in the x-direction and attains a certain distribution in θ in the invaded parts.

- Model

What we expect ?

In general we expect that the population propagates in the x-direction and attains a certain distribution in θ in the invaded parts.

Related works:

- L. Desvillettes, R. Ferriere and C. Prevost (2004)
- N. Champagnat and S. Méléard (2007)
- A. Arnold, L. Desvillettes, and C. Prevost (2012)

- Model

Other related works:

- O. Benichou, V. Calvez, N. Meunier and R. Voituriez (2012)
- E. Bouin, V. Calvez, N. Meunier, S. M., B. Perthame, G. Raoul and R. Voituriez (2012): A formal result for the invasion of cane toads using the Hamilton-Jacobi approach
- Alfaro, Coville, Raoul (2013) : Existence of propagating fronts with $a(x, \theta) = b(x \cdot e \theta)$ in the form of

$$n(t, x, \theta) = u(x \cdot e - ct, \theta), \qquad c \ge c^*.$$

H. Berestycki and G. Chapuisat, preprint: a local model.

L_Model

Rescaling

$$\begin{cases} \varepsilon \,\partial_t n_\varepsilon = \varepsilon^2 \,\Delta_x n_\varepsilon + \alpha \,\Delta_\theta n_\varepsilon + r \,n_\varepsilon \,(a(x,\theta) - \rho_\varepsilon), \quad (x,\theta) \in \mathbb{R}^d \times \Theta, \\ \frac{\partial n_\varepsilon}{\partial \mathbf{n}} = 0 \,\,\text{on} \,\,\partial\Theta, \\ \rho_\varepsilon(t,x) = \int_\Theta n_\varepsilon(t,x,\theta) d\theta, \qquad n_\varepsilon(0,x,\theta) = n_\varepsilon^0(x,\theta). \end{cases}$$

 ε is small:

small diffusion in space and **long time**.

- Model

Lemma (Eigenvalue or cell problem)

For all $x \in \mathbb{R}^d$, there exists a unique eigenvalue H(x) corresponding to a strictly positive eigenfunction $Q(x, \cdot)$ which satisfies

$$\begin{cases} \alpha \Delta_{\theta} Q + ra(x, \theta) Q = H(x) Q \\ \frac{\partial Q(x, \cdot)}{\partial n} = 0 \text{ on } \partial \Theta. \end{cases}$$

The eigenvector is unique under the additional normalization assumption

$$\int_{\Theta} Q(x,\theta) d\theta = 1.$$

Moreover, H and Q are smooth functions.

Some assumptions

$$-Mx^{2} + B \le a(x,\theta) \le a_{\infty}$$
$$\rho^{0}(x) \le a_{\infty}$$
$$\exp\left(\frac{-C_{1}(x)}{\varepsilon}\right) \le n_{\varepsilon}(0,x,\theta) \le \exp\left(\frac{C_{2}}{\varepsilon}\right)$$

and we use the Hopf-Cole transformation

$$n_{\varepsilon} = \exp\left(\frac{u_{\varepsilon}}{\varepsilon}\right).$$

11 / 35

Theorem (Asymptotic behavior)

(i) The family $(u_{\varepsilon})_{\varepsilon}$ converges locally uniformly to $u : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ the unique viscosity solution of

 $\begin{cases} \max\left(\partial_t u - |\nabla_x u|^2 - H, u\right) = 0, & \text{ in } (0, \infty) \times \mathbb{R}^d, \\ u(0, x) = u_0(x). \end{cases}$

- (ii) Uniformly on compact subsets of $Int \{u < 0\} \times \Theta$, $\lim_{\varepsilon \to 0} n^{\varepsilon} = 0$,
- (iii) There exists C > 1 such that, uniformly on compact subsets of $Int (\{u(t, x) = 0\} \cap \{H(x) > 0\}),$

$$\liminf_{\varepsilon\to 0} \rho_{\varepsilon}(t,x) \geq \frac{H(x)}{rC}.$$

Theorem (Convergence of n_{ε} in a particular case)

Let $a(x, \theta) = a(\theta) - b(x)$. Then $Q(x, \theta) = Q(\theta)$. Let the initial data be

$$n_{\varepsilon}(t=0,x, heta)=m_{\varepsilon}(x)Q(heta).$$

Then

(i) For all
$$t > 0$$
 and $(x, \theta) \in \mathbb{R} \times \Theta$,
 $n_{\varepsilon}(t, x, \theta) = m_{\varepsilon}(t, x)Q(\theta)$.
(ii) For all $(t, x, \theta) \in \{u(t, x) = 0\} \times \Theta$,
 $\lim_{\varepsilon \to 0} n_{\varepsilon}(t, x, \theta) = \frac{H}{r}Q(\theta)$.

Some qualitative properties Let $a(x, \theta) = a(\theta)$.

$$\implies$$
 $H(x) = H, \quad Q(x, \theta) = Q(\theta).$

Propagation in the *x*-direction:

$$\max\left(\partial_t u - |\nabla_x u|^2 - H, u\right) = 0.$$

Speed of propagation in space, starting from an initial data with compact support:

$$c = 2\sqrt{H}.$$

The **phenotypical distribution** in $Int{u(t, x) = 0}$ (at the back of the front):

$$n_{\varepsilon}(t,x,\theta) \approx \frac{H}{r}Q(\theta).$$

A possible explanation for the case of Drosophila Subobscura

Let

$$r = 1,$$
 $a(x, \theta) = A - D(\theta - bx)^2,$ $x, \theta \in \mathbb{R}.$

Then

$$Q(x,\theta) = C \exp\left(\frac{1}{2}\sqrt{\frac{D}{\alpha}}(\theta-bx)^2\right), \qquad H(x) = A - \sqrt{D\alpha}.$$

While the mutation rate α is small, the population concentrates on the line $\theta = bx$.

Some heuristics

We use the following ansatz

$$n_{\varepsilon} = \exp\left(rac{u_{\varepsilon}(t,x, heta)}{arepsilon}
ight).$$

$$\partial_t u_{\varepsilon} = \varepsilon \Delta_x u_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} u_{\varepsilon} + |\nabla_x u_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_{\theta} u_{\varepsilon}|^2 + r(a(x,\theta) - \rho_{\varepsilon})$$

Some heuristics

We use the following ansatz

$$n_{\varepsilon} = \exp\left(\frac{u_{\varepsilon}(t,x,\theta)}{\varepsilon}\right).$$

$$\partial_t u_{\varepsilon} = \varepsilon \Delta_x u_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} u_{\varepsilon} + |\nabla_x u_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_{\theta} u_{\varepsilon}|^2 + r(a(x,\theta) - \rho_{\varepsilon})$$

A formal expansion of u_{ε} :

$$u_{\varepsilon}(t,x,\theta) = u_0(t,x,\theta) + \varepsilon u_1(t,x,\theta) + O(\varepsilon^2).$$

Some heuristics

We use the following ansatz

$$n_{\varepsilon} = \exp\left(\frac{u_{\varepsilon}(t,x,\theta)}{\varepsilon}\right).$$

$$\partial_t u_{\varepsilon} = \varepsilon \Delta_x u_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} u_{\varepsilon} + |\nabla_x u_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_{\theta} u_{\varepsilon}|^2 + r(a(x,\theta) - \rho_{\varepsilon})$$

A formal expansion of u_{ε} :

$$u_{\varepsilon}(t,x,\theta) = u_0(t,x,\theta) + \varepsilon u_1(t,x,\theta) + O(\varepsilon^2).$$

We replace this in the equation and keeping the terms of order ε^{-2} we obtain, for all (t, x, θ) ,

 $|\nabla_{\theta}u_0(t,x,\theta)|^2=0.$

A Hamilton-Jacobi approach for a model of population structured by space and trait

Heuristics

This suggests that

 $u_0(t,x,\theta)=u_0(t,x).$

This suggests that

 $u_0(t,x,\theta)=u_0(t,x).$

Next, we keep the zero order terms (terms with coefficient ε^0):

$$-\alpha \Delta_{\theta} u_1 - \alpha |\nabla_{\theta} u_1|^2 - ra(x, \theta) = \left[-\partial_t u_0 + |\nabla_x u_0|^2 - r\rho_0 \right](t, x).$$

and u_1 satisfies the Neumann boundary condition.

This suggests that

 $u_0(t,x,\theta)=u_0(t,x).$

Next, we keep the zero order terms (terms with coefficient ε^{0}):

$$-\alpha \Delta_{\theta} u_1 - \alpha |\nabla_{\theta} u_1|^2 - ra(x, \theta) = \left[-\partial_t u_0 + |\nabla_x u_0|^2 - r\rho_0 \right](t, x).$$

and u_1 satisfies the Neumann boundary condition.

$$[\partial_t u_0 - |\nabla_x u_0|^2 + r\rho_0](t, x) = H(x),$$

 $u_1(t,x,\theta) = \ln Q(x,\theta) + \mu(t,x).$

17 / 35

We can now write

$$n_{\varepsilon}(t,x,\theta) \approx e^{\frac{u_0(t,x)}{\varepsilon}+u_1(t,x,\theta)},$$

$$\rho_{\varepsilon}(t,x) \approx e^{\mu(t,x) + \frac{u_0(t,x)}{\varepsilon}}$$

٠

A Hamilton-Jacobi approach for a model of population structured by space and trait

Heuristics

We can now write

$$n_{arepsilon}(t,x, heta)pprox e^{rac{u_0(t,x)}{arepsilon}+u_1(t,x, heta)}, \qquad
ho_{arepsilon}(t,x)pprox e^{\mu(t,x)+rac{u_0(t,x)}{arepsilon}}$$

٠

Therefore

$$\rho_0 \leq C \quad \Longrightarrow \quad u_0 \leq 0, \quad \text{and} \quad \rho_0 > 0 \quad \implies \quad u_0 = 0.$$

We can now write

$$n_arepsilon(t,x, heta)pprox e^{rac{u_0(t,x)}{arepsilon}+u_1(t,x, heta)}, \qquad
ho_arepsilon(t,x)pprox e^{\mu(t,x)+rac{u_0(t,x)}{arepsilon}})$$

•

Therefore

$$\rho_0 \leq C \implies u_0 \leq 0, \text{ and } \rho_0 > 0 \implies u_0 = 0.$$

We deduce that

$$\begin{cases} \rho_0(t,x) = 0 \implies \partial_t u_0(t,x) - |\nabla_x u_0|^2(t,x) - H(x) = 0, \\ \\ \rho_0(t,x) > 0 \implies u_0(t,x) = 0 \text{ and} \\ r \exp(\mu(t,x)) = r\rho_0(t,x) = H(x), \end{cases}$$

We can now write

$$n_arepsilon(t,x, heta)pprox e^{rac{u_0(t,x)}{arepsilon}+u_1(t,x, heta)}, \qquad
ho_arepsilon(t,x)pprox e^{\mu(t,x)+rac{u_0(t,x)}{arepsilon}})$$

.

Therefore

$$\rho_0 \leq C \implies u_0 \leq 0, \text{ and } \rho_0 > 0 \implies u_0 = 0.$$

We deduce that

$$\begin{cases} \rho_0(t,x) = 0 \implies \partial_t u_0(t,x) - |\nabla_x u_0|^2(t,x) - H(x) = 0, \\ \\ \rho_0(t,x) > 0 \implies u_0(t,x) = 0 \text{ and} \\ r \exp(\mu(t,x)) = r\rho_0(t,x) = H(x), \end{cases}$$

Therefore, we expect that

$$n_{\varepsilon}(t, x, \theta) \longrightarrow \begin{cases} \frac{H(x)}{r}Q(x, \theta) & \text{if } u_0(t, x) = 0\\ 0 & \text{if } u_0(t, x) < 0 \end{cases}$$

with

$$\begin{cases} \alpha \Delta_{\theta} Q + ra(x, \theta) Q = H(x) Q. \\ \\ \frac{\partial Q(x, \cdot)}{\partial n} = 0 \text{ on } \partial \Theta, \qquad \int_{\Theta} Q(x, \theta) d\theta = 1. \end{cases}$$

 and

$$\max\left(u_0, \partial_t u_0 - |\nabla_x u_0|^2 - H(x)\right) = 0.$$

-Numerical results

The numerical resolution of the main problem

- The values of $\rho_{\varepsilon}(x)$ and $\frac{H(x)}{r}$
- The trait distribution at the edge and at the back of the front that we compare to Q
- The density $n^{\varepsilon}(t, x, \theta)$

$$\alpha = 1, \quad r = 2, \quad a_1(\theta) = \frac{1}{4} + \frac{\theta}{2}$$

-Numerical results

The numerical resolution of the main problem

-Numerical results

The numerical resolution of the main problem

$$a_3(\theta) = \frac{1}{4} + \frac{\theta}{2} + \left(\sin(x) - \frac{1}{2}\right)$$

Difficulties

- We don't have a priori Lipschitz estimate in x
- No maximum principle due to the nonlocal term

Difficulties

- We don't have a priori Lipschitz estimate in x
- No maximum principle due to the nonlocal term

Main elements to prove the convergence to the Hamilton-Jacobi equation:

Difficulties

- We don't have a priori Lipschitz estimate in x
- No maximum principle due to the nonlocal term

Main elements to prove the convergence to the Hamilton-Jacobi equation:

Regularizing effect in θ :

Bernstein method

Difficulties

- We don't have a priori Lipschitz estimate in x
- No maximum principle due to the nonlocal term

Main elements to prove the convergence to the Hamilton-Jacobi equation:

Regularizing effect in θ :

Bernstein method

Convergence to the effective Hamilton-Jacobi equation:

- half-relaxed limits method for viscosity solutions
- perturbed test functions

Outlines of the proof

Theorem (Convergence to the Hamilton-Jacobi equation)

Under the previous assumptions and

$$\lim_{\varepsilon\to 0} u_{\varepsilon}(0, x, \theta) = u^0(x),$$

as ε vanishes, $(u_{\varepsilon})_{\varepsilon}$ converges locally uniformly to u the unique viscosity solution of

$$\begin{cases} \max\left(\partial_t u - |\nabla_x u|^2 - H, u\right) = 0, & \text{ in } (0, \infty) \times \mathbb{R}^d \\ u(0, x) = u^0(x). \end{cases}$$

By replacing

$$n_{\varepsilon} = \exp\left(\frac{u_{\varepsilon}}{\varepsilon}\right).$$

in the equation on n_{ε} we obtain

$$\begin{cases} \partial_t u_{\varepsilon} = \varepsilon \Delta_x u_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} u_{\varepsilon} + |\nabla_x u_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_{\theta} u_{\varepsilon}|^2 + r(a(x,\theta) - \rho_{\varepsilon}) \\\\ \frac{\partial u_{\varepsilon}(t,x,\cdot)}{\partial \mathbf{n}} = 0 \text{ on } \partial\Theta, \\\\ u_{\varepsilon}(0,x,\theta) = u_{\varepsilon}^0(x,\theta). \end{cases}$$

Theorem (Regularity results for u_{ε})

Under the previous assumptions, the family $(u_{\varepsilon})_{\varepsilon>0}$ is locally uniformly bounded in $\mathbb{R}^+ \times \mathbb{R}^d \times \Theta$. Let $\gamma > 0$ and

$$\mathsf{v}_arepsilon := \sqrt{\mathsf{C}(t) + \gamma^2 - u_arepsilon}.$$

Then,

$$|\nabla_{\theta} \mathbf{v}_{\varepsilon}| \leq \frac{\varepsilon}{2\sqrt{\alpha t}} + \left(\frac{rC_0\varepsilon^2}{\alpha\gamma}\right)^{\frac{1}{3}}.$$

In particular, this gives a **regularizing effect in** θ for all t > 0, and the fact that $|\nabla_{\theta} \mathbf{v}_{\varepsilon}| \rightarrow 0$ locally uniformly as ε goes to 0.

Bounds on ρ_{ε} and u_{ε}

Bounds on ρ_{ε} and u_{ε}

and by maximum/comparison principle

 $-r(M|x|^2+B)t-C_1(x)-r\varepsilon Mt^2 \leq u_{\varepsilon}(t,x,\theta) \leq C_2+ra_{\infty}t.$

Bounds on ρ_{ε} and u_{ε}

and by maximum/comparison principle

 $-r(M|x|^2+B)t-C_1(x)-r\varepsilon Mt^2 \leq u_{\varepsilon}(t,x,\theta) \leq C_2+ra_{\infty}t.$

Recall (assumptions):

$$-Mx^2+B\leq a(x, heta)-a_\infty\leq 0,$$

 $ho_arepsilon^0(x)\leq a_\infty, \qquad -C_1(x)\leq u_arepsilon(0,x, heta)\leq C_2.$

Regularity in θ

Let

$$v_{\varepsilon} := \sqrt{C_2 + ra_{\infty}t + \gamma^2 - u_{\varepsilon}} \geq \gamma.$$

We replace this in the equation on u_{ε} and obtain

$$\partial_{t} v_{\varepsilon} = \varepsilon \Delta_{x} v_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} v_{\varepsilon} + \left(\frac{\varepsilon}{v_{\varepsilon}} - 2v_{\varepsilon}\right) |\nabla_{x} v_{\varepsilon}|^{2} \\ + \left(\frac{\alpha}{\varepsilon v_{\varepsilon}} - \frac{2\alpha v_{\varepsilon}}{\varepsilon^{2}}\right) |\nabla_{\theta} v_{\varepsilon}|^{2} - \frac{1}{2v_{\varepsilon}} r(a(x,\theta) - a_{\infty} - \rho_{\varepsilon}).$$

We differentiate this equation with respect to θ and multiply it by by $\frac{\nabla_{\theta} v_{\varepsilon}}{|\nabla_{\theta} v_{\varepsilon}|}$ to obtain

A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

$$\begin{split} \partial_{t} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| &\leq \varepsilon \Delta_{x} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + \frac{\alpha}{\varepsilon} \Delta_{\theta} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + 2\left(\frac{\varepsilon}{\mathbf{v}_{\varepsilon}} - 2\mathbf{v}_{\varepsilon}\right) \nabla_{x} \mathbf{v}_{\varepsilon} \cdot \nabla_{x} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| \\ &+ 2\left(\frac{\alpha}{\varepsilon \mathbf{v}_{\varepsilon}} - \frac{2\alpha \mathbf{v}_{\varepsilon}}{\varepsilon^{2}}\right) \nabla_{\theta} \mathbf{v}_{\varepsilon} \cdot \nabla_{\theta} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + \left(-\frac{\varepsilon}{\mathbf{v}_{\varepsilon}^{2}} - 2\right) |\nabla_{x} \mathbf{v}_{\varepsilon}|^{2} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| \\ &+ \left(-\frac{\alpha}{\varepsilon \mathbf{v}_{\varepsilon}^{2}} - \frac{2\alpha}{\varepsilon^{2}}\right) |\nabla_{\theta} \mathbf{v}_{\varepsilon}|^{3} + \frac{r |\nabla_{\theta} \mathbf{a}(x, \theta)|}{2\mathbf{v}_{\varepsilon}}, \end{split}$$

$$\begin{split} \partial_{t} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| &\leq \varepsilon \Delta_{\mathbf{x}} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + \frac{\alpha}{\varepsilon} \Delta_{\theta} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + 2\left(\frac{\varepsilon}{\mathbf{v}_{\varepsilon}} - 2\mathbf{v}_{\varepsilon}\right) \nabla_{\mathbf{x}} \mathbf{v}_{\varepsilon} \cdot \nabla_{\mathbf{x}} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| \\ &+ 2\left(\frac{\alpha}{\varepsilon \mathbf{v}_{\varepsilon}} - \frac{2\alpha \mathbf{v}_{\varepsilon}}{\varepsilon^{2}}\right) \nabla_{\theta} \mathbf{v}_{\varepsilon} \cdot \nabla_{\theta} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| + \left(-\frac{\varepsilon}{\mathbf{v}_{\varepsilon}^{2}} - 2\right) |\nabla_{\mathbf{x}} \mathbf{v}_{\varepsilon}|^{2} |\nabla_{\theta} \mathbf{v}_{\varepsilon}| \\ &+ \left(-\frac{\alpha}{\varepsilon \mathbf{v}_{\varepsilon}^{2}} - \frac{2\alpha}{\varepsilon^{2}}\right) |\nabla_{\theta} \mathbf{v}_{\varepsilon}|^{3} + \frac{r |\nabla_{\theta} \mathbf{a}(\mathbf{x}, \theta)|}{2\mathbf{v}_{\varepsilon}}, \end{split}$$

Therefore, $\mathit{w}_{arepsilon} := |
abla_{ heta} \mathit{v}_{arepsilon}|$ is a subsolution of

$$\begin{aligned} \partial_{t} \mathbf{w}_{\varepsilon} &\leq \varepsilon \Delta_{x} \mathbf{w}_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} \mathbf{w}_{\varepsilon} + 2\left(\frac{\varepsilon}{\mathbf{v}_{\varepsilon}} - 2\mathbf{v}_{\varepsilon}\right) \nabla_{x} \mathbf{v}_{\varepsilon} \cdot \nabla_{x} \mathbf{w}_{\varepsilon} \\ &+ 2\left(\frac{\alpha}{\varepsilon \mathbf{v}_{\varepsilon}} - \frac{2\alpha \mathbf{v}_{\varepsilon}}{\varepsilon^{2}}\right) \nabla_{\theta} \mathbf{v}_{\varepsilon} \cdot \nabla_{\theta} \mathbf{w}_{\varepsilon} - \frac{2\alpha}{\varepsilon^{2}} |\mathbf{w}_{\varepsilon}|^{3} + \frac{rC_{0}}{2\gamma}. \end{aligned}$$

A Hamilton-Jacobi approach for a model of population structured by space and trait

Outlines of the proof

We can find a supersolution for the previous equation

$$z(t) := \frac{\varepsilon}{2\sqrt{\alpha t}} + \left(\frac{rC_0\varepsilon^2}{\alpha\gamma}\right)^{\frac{1}{3}}.$$

Note that

$$z(0) = \infty.$$

A Hamilton-Jacobi approach for a model of population structured by space and trait

└─ Outlines of the proof

We can find a supersolution for the previous equation

$$z(t) := \frac{\varepsilon}{2\sqrt{\alpha t}} + \left(\frac{rC_0\varepsilon^2}{\alpha\gamma}\right)^{\frac{1}{3}}.$$

Note that

$$z(0) = \infty.$$

By the comparison principle (with Neumann boundary condition):

$$|\nabla_{\theta} \mathbf{v}_{\varepsilon}| = \mathbf{w}_{\varepsilon} \leq \frac{\varepsilon}{2\sqrt{\alpha t}} + \left(\frac{rC_0\varepsilon^2}{\alpha\gamma}\right)^{\frac{1}{3}}.$$

In particular, for all t > 0, as $\varepsilon \to 0$,

$$|
abla_{ heta} v_{arepsilon}(t,x, heta)|
ightarrow 0, \quad \Rightarrow \quad |
abla_{ heta} u_{arepsilon}(t,x, heta)|
ightarrow 0.$$

Convergence to the Hamilton-Jacobi equation

Let's first suppose that we also have regularity estimates in x, such that we know a priori that

$$u_{\varepsilon} \longrightarrow u$$
, locally uniformly as $\varepsilon \rightarrow 0$.

Convergence to the Hamilton-Jacobi equation

Let's first suppose that we also have regularity estimates in x, such that we know a priori that

 $u_{\varepsilon} \longrightarrow u$, locally uniformly as $\varepsilon \rightarrow 0$.

From the previous estimate in θ we deduce that

 $u(t, x, \theta) = u(t, x).$

Convergence to the Hamilton-Jacobi equation

Let's first suppose that we also have regularity estimates in x, such that we know a priori that

 $u_{\varepsilon} \longrightarrow u$, locally uniformly as $\varepsilon \rightarrow 0$.

From the previous estimate in θ we deduce that

$$u(t,x,\theta)=u(t,x).$$

Let's also suppose that

 $ho_{arepsilon}(t,x)\longrightarrow
ho(t,x), \qquad ext{locally uniformly as } arepsilon o 0.$

Then, we prove that u is a viscosity solution of

$$\partial_t u - |\nabla_x u|^2 - H + r\rho = 0.$$

Perturbed test function method

Let $\varphi : \mathbb{R}^+ \times \mathbb{R}^d$ be a smooth function such that $u - \varphi$ has a maximum at (t_0, x_0) . Then define

$$\varphi_{\varepsilon}(t, x, \theta) = \varphi(t, x) + \varepsilon \chi(x, \theta).$$

with $\chi(x,\theta) = \ln Q(x,\theta)$ and

$$-\alpha \Delta_{\theta} Q = a(x,\theta)Q - H(x)Q.$$

Then, for all $\varepsilon > 0$, there exists $(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon})$ such that $u_{\varepsilon} - \varphi_{\varepsilon}$ has a maximum at this point and

$$(t_{arepsilon}, x_{arepsilon})
ightarrow (t_0, x_0), \qquad ext{as } arepsilon
ightarrow 0.$$

By the viscosity sub-solution criterion, at the point $(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon})$,

 $\partial_t \varphi_{\varepsilon} \leq \varepsilon \Delta_x \varphi_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_{\theta} \varphi_{\varepsilon} + |\nabla_x \varphi_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_{\theta} \varphi_{\varepsilon}|^2 + r(a(x_{\varepsilon}, \theta_{\varepsilon}) - \rho_{\varepsilon})$

By the viscosity sub-solution criterion, at the point $(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon})$,

By the viscosity sub-solution criterion, at the point $(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon})$, $\partial_t \varphi_{\varepsilon} \leq \varepsilon \Delta_x \varphi_{\varepsilon} + \frac{\alpha}{\varepsilon} \Delta_\theta \varphi_{\varepsilon} + |\nabla_x \varphi_{\varepsilon}|^2 + \frac{\alpha}{\varepsilon^2} |\nabla_\theta \varphi_{\varepsilon}|^2 + r(a(x_{\varepsilon}, \theta_{\varepsilon}) - \rho_{\varepsilon})$ 1 $\partial_t \varphi(t_{\varepsilon}, x_{\varepsilon}) = -\varepsilon \Delta_x \left(\varphi + \varepsilon \chi \right) \left(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon} \right) - |\nabla_x \left(\varphi + \varepsilon \chi \right)|^2 \left(t_{\varepsilon}, x_{\varepsilon}, \theta_{\varepsilon} \right)$ $< \alpha \Delta_{\theta} \chi(x_{\varepsilon}, \theta_{\varepsilon}) + \alpha |\nabla_{\theta} \chi|^2(x_{\varepsilon}, \theta_{\varepsilon}) + r(a(x_{\varepsilon}, \theta_{\varepsilon}) - \rho_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}))$ $= H(x_{\varepsilon}) - r\rho_{\varepsilon}(t_{\varepsilon}, x_{\varepsilon}).$ as $\varepsilon \to 0$. \Rightarrow $\partial_{\tau} \varphi(t_0, x_0) - |\nabla_x \varphi|^2 \leq H(x_0) - r \rho(t_0, x_0).$

 \Rightarrow *u* is a **subsolution**. (Similar argument for supersolution).

Difficulties

• We don't have a priori Lipschitz estimate in *x*:

Difficulties

• We don't have a priori Lipschitz estimate in *x*:

We use the so called **half-relaxed limits** method for viscosity solutions to pass to the limit.

Difficulties

• We don't have a priori Lipschitz estimate in *x*:

We use the so called **half-relaxed limits** method for viscosity solutions to pass to the limit.

• We don't have a priori convergence of ρ_{ε} :

Difficulties

• We don't have a priori Lipschitz estimate in *x*:

We use the so called **half-relaxed limits** method for viscosity solutions to pass to the limit.

• We don't have a priori convergence of ρ_{ε} :

We only prove

$$\max(\partial_t u - |
abla_{ imes} u|^2 - H, u) = 0, \qquad ext{in } (0,\infty) imes \mathbb{R}^d.$$

Thank you for your attention !