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Consider the following Chern-Simons-Higgs equation:

(1)

∆u+ 1
ε2 e

u(1− eu) = 4π
∑N

j=1 δpj , in Ω,

u is doubly periodic on ∂Ω,

where Ω is a parallelogram in R2, pj ∈ Ω, j = 1, · · · , N .
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Some simple facts:

• (1) has no solution if ε > 0 is large:

∫
Ω

eu(1− eu) = 4πNε.

But eu(1− eu) ≤ 1
4 . So ε ≤ |Ω|

16πN .

• Maximum principle gives u ≤ 0. So

eu(1− eu) ≥ 0.

We study (1) with ε → 0.
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Introduce

u0(x) = −4π
N∑
j=1

G(x, pj),

where G(x, pj) is the Green function:

∆G(x, pj) = −δpj +
1

|Ω|
,

∫
Ω

G(x, pj) dx = 0.

Near each vortex point pj ,

u0(x) = 2m ln |x− pj |+O(1),

where m is the number of pi satisfying pi = pj .
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We can use the function u0 to remove the singularities from (1).

Replace u by u+ u0 in (1), then u satisfies

(2)

∆u+ 1
ε2 e

u+u0(1− eu+u0) = 4πN
|Ω| , in Ω,

u is doubly periodic on ∂Ω,

Note that u0 has a singularity at pj . But near pj ,

eu0 ∼ |x− pj |2m

and eu0 is a smooth function.
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Let uε be a solution of (2). Integrate (2):

∫
Ω

euε+u0(1− euε+u0) = 4πNε → 0.

Since euε+u0(1− euε+u0) ≥ 0, we find either

uε + u0 → 0, a.e. in Ω,

or

uε + u0 → −∞, a.e. in Ω.
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Known Result for (2):

For εn → 0, then one of the following is true (K.Choe and N.Kim, 2008)

(a) un + u0 → 0 uniformly in any compact subset of Ω \ {p1, · · · , pN};

(b) un + ln 1
ε2n

is bounded;
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(c) there is a finite set S = {q1, · · · , qL} ⊂ Ω and x1,n, · · · , xL,n ∈ Ω, such

that as n → +∞, xj,n → qj ,

un(xj,n) + ln
1

ε2n
→ +∞, ∀ j = 1, · · · , L,

and

un(x) + ln
1

ε2n
→ −∞, uniformly on any compact subset of Ω \ S.

Moreover,

1

ε2n
eun+u0(1− eun+u0) →

L∑
j=1

Mjδqj , Mj ≥ 8π.

Solution satisfying (a) is called a topological solution. Solution satisfying (b) or (c) is

called a non-topological solution. Solution satisfying (c) is called a bubbling solution.
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The limit problem is given by either

(3) ∆u+ |x|2meu = 0, in R2, lim
|x|→∞

u(x) = −∞;

or

(4) ∆u+ |x|2meu(1− |x|2meu) = 0, in R2, lim
|x|→∞

u(x) = −∞.

Here, m = 0 if the blow-up point is different from any of the vortex points pj , and

m is the number of vortex points which coincide with qi if the blow-up point is qi.
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• All the entire solutions of (11) have been classified.

• For (4) with m > 0, only the entire radial solutions have been classified.

• All the solutions of either (11) or (4) carry an energy of at least 8π. This is the

reason that in (c) of Theorem A, the weight Mj ≥ 8π.
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Question:

• Are there solutions satisfying each case (a), or (b), or (c)?

• In (c), can Mj be any constant bigger than 8π?

• Simple blow up: is there just one bubble near each blow up point?

• Where is the blow up points?

• Can we count the exact number of the solutions for (2)?

Simple result: If N = 1, then 1
ε2

∫
Ω
eu(1− eu) = 4π. So (c) can not occur in this

case.
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Topological Solution

• Caffarelli and Y.Yang (1995): If ε > 0 is small, (2) always has a topological

solution.

• Tarantello (2007): (2) has a unique topological solution provided that ε > 0 is

small enough.
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Non-topological Solutions

Type (b) solutions:

• Tarantello (1996): If N = 1, (2) has a solution satisfying (b).

• Nolasco and Tarantello (1999): For N = 2, (2) has a solution satisfying (b) if

(5)

inf
{1
2

∫
Ω

|Du|2 − 8π ln

∫
Ω

eu0+u :

∫
Ω

u = 0 and u is periodic in ∂Ω
}

is achieved.
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If (b) occurs, then un + ln 1
ε2n

converges to u in C1 and u satisfies the following

mean field equation:

(6)

−∆u = eu+u0 − 4Nπ
|Ω| , in Ω,

u is doubly periodic on ∂Ω,

Note that if (6) has no solution, then (2) has no type (b) solution.
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Single Bubbling Solutions

Problem (raised by Tarantello): Can one find solutions uε, such that uε

concentrates as ε → 0 at any given critical point of eu0?

Critical point x0 of eu0 :

• x0 is a critical point of u0;

• x0 is one of the singular point pj .

In this talk, we will give the following answer for the above question:

• Yes, if x0 is a critical point of u0 and N ≥ 3;

• Yes, if x0 is one of the singular point pj and N ≥ 5;

• No, if N = 2;
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Existence of Single Bubbling Solutions

• Nolasco and Tarantello (1999): For N = 2, (2) has a solution satisfying (c) if

(7)

inf
{1
2

∫
Ω

|Du|2 − 8π ln

∫
Ω

eu0+u :

∫
Ω

u = 0 and u is periodic in ∂Ω
}

is not achieved. Moreover, L = 1 and p = p1 satisfies

u0(p) = maxx∈Ω u0(x).

• Choe (2007): For N = 3, (2) has a solution satisfying (c) with L = 1 and

p = p1 satisfies u0(p) = maxx∈Ω u0(x).

16



The following theorems are about the existence of single bubbling solutions.

Theorem 0.1. ( C.S. Lin and S. Yan, CMP (2010)) Assume that N ≥ 5. Then

there is an ε0 > 0, such that for any ε ∈ (0, ε0) and pi satisfying pi ̸= pj for all

j ̸= i, (2) has a solution uε, satisfying

1

ε2
euε

(
1− euε

)
→ 4πNδpi ,

as ε → 0.
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Remark.

• We need to assume that pi ̸= pj for all j ̸= i because we can only prove that

the radial solution of

∆u+ |x|2meu(1− |x|2meu) = 0, in R2, lim
|x|→∞

u(x) = −∞

is non-degenerate for m = 1;

• We believe that pi ̸= pj for all j ̸= i can be relaxed, but it can not be removed

totally. Due to the energy constraint, the number m of the pj with pj = pi must

satisfy 2(m+ 1) ≤ N .
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Theorem 0.2. (C.S. Lin and S. Yan, CPAM, 2013) Suppose that N ≥ 3. Assume

that p0 is an isolated critical point of the function u0 satisfying deg(Du0, p0) ̸= 0.

Then there is an ε0 > 0, such that for any ε ∈ (0, ε0), (1) has a solution uε,

satisfying

1

ε2
euε

(
1− euε

)
→ 4πNδp0 ,

as ε → 0.
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Theorem 0.3. ( C.-S.Lin and S. Yan: ARMA, 2013) Suppose that N = 2. Assume

that p0 is an isolated critical point of the function u0 satisfying deg(Du0, p0) ̸= 0

and

D(p0) :=

∫
Ω

e8π(γ(y,p0)−γ(p0.p0))+(u0(y)−u0(p0)) − 1

|y − p0|4
dy

−
∫
R2\Ω

1

|y − p0|4
dy < 0,

(8)

where γ(y, x) is the regular part of G(y, x). Then there is an ε0 > 0, such that

for any ε ∈ (0, ε0), (2) has a solution uε, blowing up at p0 as ε → 0.
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• Del Pino, Musso and Esposito: Construct bubbling solutions blowing at a vortex

point in the case N = 4;

• Condition (8) is nearly necessary.
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The exact number of solutions in the case N = 2

We now discuss the number of solutions that (2) can have.

From the above discussion, we know that if N ≥ 3, then the number of solutions for

(2) is at least the number of the critical points of u0 +1. Actually, it has more

solutions than this.

The case N = 2 is different.
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Now we introduce a recent result obtained by C.S.Lin and myself:

Theorem 0.4. Suppose that Ω is a rectangle, N = 2 and p1 = p2 = p. If ε > 0

is small, then (2) has exactly two solutions. One is the topological solution; the other

is the bubbling solution blowing up at the maximum point q of u0.

Note that under the condition of Theorem 0.4,

u0 = 8πG(x, p)

has three critical points ( two saddle points and one maximum point), all of which

are non-degenerate. Theorem 0.4 shows two of these critical points ( in fact, the two

saddle points) can not generate a bubbling solution.
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Idea of the proof of Theorem 0.4:

By a result of C.-S. Lin and C.-L.Wang (Ann. Math., 2010), if Ω is a rectangle,

N = 2 and p1 = p2 = p, then

(9)

−∆u = eu+u0 − 8π
|Ω| , in Ω,

u is doubly periodic on ∂Ω,

has no solution. So, (2) just has a unique topological solution and some bubbling

solutions. To prove Theorem 0.4, we just need to prove the uniqueness of bubbling

solution.
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Uniqueness of Bubbling Solution

(1) The limit equation.

Integrating (2), we find

(10)
1

ε2

∫
Ω

euε+u0(1− euε+u0) = 8π.

From this energy identity, we can deduce that any bubbling solution must have just

one bubble, and the limit equation for this solution is given by

(11) ∆u+ eu = 0, in R2,

∫
R2

eu < +∞.
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(2) A necessary condition for the blow-up point.

Let xε be the blow-up point of the bubbling solution uε. We have

Theorem 0.5. Suppose that xε → q. Then q is a critical point of u0, and

D(q) :=

∫
Ω

e8π(γ(y,q)−γ(q,q))+(u0(y)−u0(q)) − 1

|y − q|4
dy

−
∫
R2\Ω

1

|y − q|4
dy ≤ 0,

(12)

where γ(y, x) is the regular part of G(y, x).
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Under the condition of Theorem 0.4, u0 has three critical points, all of which are

non-degenerate. Two of them are saddle points at which the quantity D is positive.

At the maximum point q of u0, the quantity D is negative. So only the maximum

point of u0 can generate a bubbling solution. We need to show that this maximum

point can only generate one bubbling solution.
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(3) Uniqueness of bubbling solution.

Theorem 0.6. Suppose that q is a non-degenerate critical point of u0 satisfying

D(q) < 0. Then there exists a unique bubbling solution for (1), blowing up at q.
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Remark: The assumption that Ω is a rectangle and p1 = p2 = q is not essential.

What we need is the following:

• The following problem

(13)

−∆u = eu+u0 − 8π
|Ω| , in Ω,

u is doubly periodic on ∂Ω,

has no solution. This will exclude type (b) solution

• At all the critical point q, D(q) ̸= 0. There is just one critical point q, which is

non-degenerate and D(q) < 0. This will guarantee the uniqueness of bubbling

solution.
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Multi-bubbling Solutions

For simplicity, we consider

(14)

∆u+ 1
ε2 e

u+u0(1− eu+u0) = 4πN
|Ω| , in Ω,

u is doubly periodic on ∂Ω,

with u0 = −4πNG(x, p).
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Theorem 0.7. (C.-S. Lin and Yan)

Let uε be a solution of (14) blowing up at k points q1, · · · , qk. Then, qj ̸= p and

Mj =
4πN
k ≥ 8π for j = 1, 2, · · · , k. In addition, all the blow up points are

simple. Moreover, it holds

(15) kDG(qj , p) =
∑
h ̸=j

DG(qj , qh), j = 1, · · · , k.

Conversely, if Mj =
4πN
k > 8π, then for any (q1, · · · , qk) satisfying (15), which

is also non-degenerate, then (14) has a unique solution blowing up at (q1, · · · , qk).
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Extra necessary condition in the case N = 2k.

Suppose that Mj =
4πN
k = 8π. For q = (q1, · · · , qk), we define the quantity

D(q) (similar to (12)) as follows.

(16) D(q) =

k∑
i=1

ρi
(∫

Ωi

efq,i − 1

|y − qi|4
−
∫
R2\Ωi

1

|y − qi|4
)
,

where Ωi is any open set satisfying with Ωi ∩ Ωj = ∅ if i ̸= j, ∪k
i=1Ω̄i = Ω̄,

Bδ(qi) ⊂⊂ Ωi, i = 1, · · · , k,
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fq,i(y) =8π
(
γ(y, qi)− γ(qi, qi) +

∑
j ̸=i

(
G(y, qj)−G(qi, qj)

))
+ u0(y)− u0(qi),

and

ρi = e8π
(
γ(qi,qi)+

∑
j ̸=i G(qi,qj)

)
+u0(qi).

Remark. The quantity D(q) is independent of the decomposition. If k = 1, then

D(q) becomes D(q) defined in (12).
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Theorem 0.8. (C.-S. Lin and Yan)

Let uε be a solution of (14) blowing up at k points q1, · · · , qk and N = 2k. Then,

both (15) holds and D(q) ≤ 0.

Conversely, if Mj =
4πN
k = 8π, then for any (q1, · · · , qk) satisfying (15), which

is also non-degenerate, and D(q) < 0, then (14) has a unique solution blowing up

at (q1, · · · , qk).
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Theorems 0.7 and (0.8) establish a relation between the number of the bubbling

solutions and the number of some points satisfying (15). To count the number of

bubbling solutions, we need to know

• the number of points satisfying (15) for each k ≤ N
2 ; whether they are all

non-degenerate;

• the number of points satisfying (15) and D < 0; whether it always holds

D ̸= 0.

If (6) has no solution, then (14) has no solution satisfying case (b). So, in this

situation, the exact number of the solutions for (14) is the number of bubbling

solution plus one.
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Assume that Ω is a rectangle.

Results already known ( C.-C.Chen, C.-S. Lin and G. Wang, 2003): If k = 1, then

the number of points satisfying (15) is 3; all of them are all non-degenerate; If

N = 2, the number of points satisfying (15) and D < 0 is one, and in the other two

saddle points, D > 0.

What can be proved (C.-S.Lin and Yan): If k = 2, then the number of points

satisfying (15) is 5; all of them are all non-degenerate; If N = 4, the number of

points satisfying (15) and D < 0 is two, and in the other three points, D > 0. So, if

N = 4, then (14) has exactly 6 solutions: one is topological solution; three are

single bubbling solutions; and two are solutions with two bubbles.
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Our conjecture: For any k, the number of points satisfying (15) is 2k + 1; all of

them are all non-degenerate; If N = 2k, the number of points satisfying (15) and

D < 0 is k, and in the other k + 1 points, D > 0. If this can be proved, then (14)

has exactly k(k + 1) solutions for the case N = 2k.

The proof of the above result is related to the non-existence of solution for the mean

field equation (6).
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