Semilinear Elliptic Equations in Convex Domains and Convex Rings

François HAMEL

Aix-Marseille University \& Institut Universitaire de France

In collaboration with N. Nadirashvili and Y. Sire

France-Taiwan Joint Conference on Nonlinear Partial Differential Equations
Taipei, October 2013

INTRODUCTION

Semilinear elliptic equation

$$
\Delta u+f(u)=0 \text { in } \Omega
$$

in a smooth bounded domain $\Omega \subset \mathbb{R}^{N}$ (dimension $N=2$ or $N \geq 2$)
Function f locally Hölder continuous
Classical solution u

- Convex domain Ω

$$
\begin{cases}u=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

- Convex ring

$$
\Omega=\Omega_{1} \backslash \overline{\Omega_{2}}
$$

with Ω_{1}, Ω_{2} convex and $\overline{\Omega_{2}} \subset \Omega_{1}$

$$
\begin{cases}u=0 & \text { on } \partial \Omega_{1} \\ u=M>0 & \text { on } \partial \Omega_{2} \\ u>0 & \text { in } \Omega\end{cases}
$$

How do the solutions u inherit the geometrical properties of Ω ?
Concavity or convexity of u are too strong properties: not true in general
What about the convexity of the superlevel sets of u ?

- Convex domain Ω :

$$
\Omega^{\lambda}=\{x \in \Omega ; u(x)>\lambda\}
$$

- Convex ring $\Omega=\Omega_{1} \backslash \overline{\Omega_{2}}$. Extend u inside Ω_{2} :

$$
\bar{u}(x)= \begin{cases}u(x) & \text { if } x \in \Omega, \\ M & \text { if } x \in \overline{\Omega_{2}}\end{cases}
$$

and

$$
\Omega^{\lambda}=\left\{x \in \Omega_{1} ; \bar{u}(x)>\lambda\right\}
$$

The superlevel set Ω^{0} is convex by assumption: $\Omega^{0}=\Omega$ if Ω is convex, and $\Omega^{0}=\Omega_{1}$ if Ω is a convex ring.
If Ω is a convex ring and $u<M$ in Ω, then $\bigcap_{\lambda<M} \Omega^{\lambda}=\overline{\Omega_{2}}$ is convex.

What about the other superlevel sets Ω^{λ} for $\lambda>0$?
The function u is called quasiconcave if the superlevel sets Ω^{λ} are convex for all $\lambda \geq 0$.

Question: is u always quasiconcave ?
P.-L. Lions (for convex domains Ω):

> "we believe that $[\ldots]$ for general f, the $[$ super $]$ level sets of any solution u of $[(1)]$ are convex"
(Two geometrical properties of solutions of semilinear problems, 1981)

CONVEX DOMAINS

Many positive examples in convex domains Ω :

- Torsion problem $f(u)=1(\Delta u+1=0)$: \sqrt{u} is concave $(\Longrightarrow u$ is quasiconcave) [Makar-Limanov, with $N=2$]
- Eigenvalue problem $f(u)=\lambda u(\Delta u+\lambda u=0$, principal eigenvalue $\lambda>0): u$ is log-concave, whence quasiconcave [Brascamp, Lieb]
- $f(u)=\lambda u^{p}$ with $\lambda>0$ and $0<p<1$: $u^{(1-p) / 2}$ is concave $(\Longrightarrow u$ is quasiconcave) [Keady, $N=2$], [Kennington, $N \geq 2$]
- Many generalizations and alternate proofs:
- $g(u)$ is concave for some increasing g (elliptic maximum principle, preservation of concavity of $g(u)$ by a parabolic equation) [Caffarelli, Spruck], [Greco, Porru], [Kawohl], [Kennington], [Korevaar], [Lions]
- curvature of the level sets of u, rank of the Hessian matrix of $g(u)$ [Acker, Payne, Philippin], [Bian, Guan, Ma, Xu], [Caffarelli, Friedman], [Korevaar, Lewis], [Xu]
- general overview [Kawohl]

A counterexample

Theorem

Dimension $N=2$. There are smooth convex domains Ω and C^{∞} functions $f:[0,+\infty) \rightarrow \mathbb{R}$ for which the problem

$$
\left\{\begin{align*}
\Delta u+f(u)=0 & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega \\
u>0 & \text { in } \Omega
\end{align*}\right.
$$

admits a solution u which is not quasiconcave.

- $f(s) \geq 1$ for all $s \geq 0$
- Problem (1) also admits a quasiconcave solution v

Remark

When Ω is a ball, then u is necessarily radially symmetric and decreasing, whence quasiconcave [Gidas, Ni, Nirenberg]

The theorem cannot hold in dimension $N=1$!

Domains Ω of the theorem:

$\Longrightarrow u$ is symmetric in x and y, and decreasing in $|x|$ and $|y|[G-N-N]$
\Longrightarrow the superlevel sets Ω^{λ} are convex and symmetric in x and y, and starshaped with respect to $(0,0)$, and u has only one critical point (more general results about uniqueness of critical points: [Cabré, Chanillo], [Payne], [Sperb])
\nRightarrow convexity of Ω^{λ}

Proof of the theorem

Step 1: notations

- Fixed $C^{\infty}(\mathbb{R})$ function g such that

$$
g=0 \text { on }(-\infty, 1], \quad g=1 \text { on }[2,+\infty) \text { and } g^{\prime} \geq 0 \text { on } \mathbb{R}
$$

- Smooth convex stadium-like domains Ω_{a}, symmetric in x and y

Figure: The domain Ω_{a}

Step 2: unconstrained and constrained variational problems

- Functional I_{a} defined in $H_{0}^{1}\left(\Omega_{a}\right)$

$$
I_{a}(u)=\frac{1}{2} \int_{\Omega_{a}}|\nabla u|^{2}-\int_{\Omega_{a}} u, \quad u \in H_{0}^{1}\left(\Omega_{a}\right)
$$

- Unique minimizer v_{a} :

$$
\left\{\begin{aligned}
\Delta v_{a}+1 & =0 \text { in } \Omega_{a}, \\
v_{a} & =0 \text { on } \partial \Omega_{a}
\end{aligned}\right.
$$

The function v_{a} is quasiconcave [Makar-Limanov] and

$$
0<v_{a}(x, y)<\frac{1-y^{2}}{2} \text { in } \Omega_{a}
$$

from the maximum principle

- Constraint

$$
U_{a}=\left\{u \in H_{0}^{1}\left(\Omega_{a}\right) ; \int_{\Omega_{a}} g(u)=1\right\}
$$

The set U_{a} is not empty (for $a \geq 1:\left|\Omega_{a}\right|>1$)

- Existence of a constrained minimizer $u_{a} \in U_{a}$:

$$
I_{a}\left(u_{a}\right)=\min _{u \in U_{a}} I_{a}(u)
$$

Euler-Lagrange equation:

$$
\left\{\begin{aligned}
\Delta u_{a}+f_{a}\left(u_{a}\right)= & 0 \text { in } \Omega_{a} \\
u_{a} & =0 \text { on } \partial \Omega_{a}
\end{aligned}\right.
$$

with

$$
f_{a}(s)=1+\mu_{a} g^{\prime}(s)
$$

Lagrange multiplier $\mu_{a} \in \mathbb{R}$. The function f_{a} is of class C^{∞}.

Step 3: elementary properties of u_{a}

- Since $u_{a} \in U_{a}$ and $g^{\prime}(s)=0$ for $s \leq 1$ and $s \geq 2$:

$$
\max _{\Omega_{a}} u_{a}>1 \quad \text { and } \quad u_{a}(x, y)<\frac{1-y^{2}}{2}+2 \text { in } \Omega_{a}
$$

- $\Delta\left(u_{a}-v_{a}\right)=-\mu_{a} g^{\prime}\left(u_{a}\right)$ has a sign

Therefore, $u_{a}-v_{a}$ has a sign, from the maximum principle:

$$
0<v_{a}<u_{a} \text { in } \Omega_{a}
$$

Hence $\mu_{a}>0$ and $f_{a}(s) \geq 1$ for all s :

- [Gidas, Ni, Nirenberg] \Longrightarrow

$$
u_{a} \text { is even in } x \text { and } y \text { and decreasing in }|x| \text { and }|y|
$$

\Longrightarrow unique critical point $(0,0)$
and the superlevel sets of u_{a} are symmetric and convex in x and y (\nRightarrow the superlevel sets are convex)

Since

$$
v_{a}<\frac{1-y^{2}}{2} \leq \frac{1}{2} \text { in } \Omega_{a}
$$

and $f_{a}=1+\mu_{a} g^{\prime}=1$ on $[0,1]$, the function v_{a} obeys

$$
\Delta v_{a}+f_{a}\left(v_{a}\right)=\Delta v_{a}+1=0
$$

and v_{a} is quasiconcave
We will show that u_{a} is not quasiconcave when a is large enough

Step 4: uniform estimates of the size of the superlevel set Ω^{1} of u_{a}

$$
\omega_{a}=\left\{(x, y) \in \Omega_{a} ; u_{a}(x, y)>1\right\}
$$

Key-lemma

$$
0 \leq \sup _{(x, y) \in \omega_{a}}|x|<C_{x} \text { and } 0<C_{y}<\sup _{(x, y) \in \omega_{a}}|y|
$$

for some positive constants C_{x} and C_{y} independent of $a \geq 1$

Figure: The superlevel set ω_{a}

Proof of the key-lemma

- The y-estimate easily follows from the x-estimate

Denote

$$
y_{a}=\sup _{(x, y) \in \omega_{a}}|y|
$$

There holds

$$
u_{a} \leq 1 \text { and } g\left(u_{a}\right)=0 \text { in } \Omega_{a} \backslash\left(-C_{x}, C_{x}\right) \times\left(-y_{a}, y_{a}\right)
$$

$$
\Longrightarrow
$$

$$
1=\int_{\Omega_{a}} g\left(u_{a}\right)=\int_{\Omega_{a} \cap\left(-C_{x}, C_{x}\right) \times\left(-y_{a}, y_{a}\right)} g\left(u_{a}\right)<4 C_{x} y_{a}
$$

\qquad

$$
y_{a}>\left(4 C_{x}\right)^{-1}=: C_{y}>0
$$

- The x-estimate: upper bound of $I_{a}\left(u_{a}\right)$

Denote

$$
\phi_{0}(y)=\frac{1-y^{2}}{2}
$$

The function ϕ_{0} is the unique minimizer of the energy in the section:

$$
J(\phi)=\frac{1}{2} \int_{-1}^{1} \phi^{\prime}(y)^{2} d y-\int_{-1}^{1} \phi(y) d y, \quad \phi \in H_{0}^{1}(-1,1)
$$

Fixed nonnegative function $w \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
w=0 \text { in } \mathbb{R}^{2} \backslash(-1,1)^{2} \text { and } w>0 \text { in }[-2 / 3,2 / 3]^{2}
$$

There is $t_{0}>0$ such that

$$
\int_{(-1,1)^{2}} g\left(\phi_{0}(y)+t_{0} w(x, y)\right) d x d y=1
$$

Test function $w_{a} \in H_{0}^{1}\left(\Omega_{a}\right)$:

$$
w_{a}(x, y)=\phi_{0}(y) \chi_{a}(x)+t_{0} w(x, y)
$$

$$
\int_{\Omega_{a}} g\left(w_{a}\right)=\int_{(-1,1)^{2}} g\left(w_{a}\right)=\int_{(-1,1)^{2}} g\left(\phi_{0}(y)+t_{0} w(x, y)\right) d x d y=1
$$

$\Longrightarrow w_{a} \in U_{a} \Longrightarrow\left(u_{a}\right.$ is a minimizer of I_{a} in $\left.U_{a}\right)$

$$
I_{a}\left(u_{a}\right) \leq I_{a}\left(w_{a}\right)
$$

Explicit calculation:

$$
I_{a}\left(w_{a}\right)=\frac{1}{2} \int_{\Omega_{a}}\left|\nabla w_{a}\right|^{2}-\int_{\Omega_{a}} w_{a}=2 a J\left(\phi_{0}\right)+C_{1}
$$

\Longrightarrow

$$
I_{a}\left(u_{a}\right) \leq 2 a J\left(\phi_{0}\right)+C_{1}
$$

- The x-estimate: lower bound of $I_{a}\left(u_{a}\right)$

$$
I_{a}\left(u_{a}\right) \geq \int_{(-a, a) \times(-1,1)}\left(\frac{\left|\nabla u_{a}\right|^{2}}{2}-u_{a}\right)-C_{2} \geq \int_{-a}^{a} J\left(u_{a}(x, \cdot)\right) d x-C_{2}
$$

Denote

$$
x_{a}=\sup _{(x, y) \in \omega_{a}}|x|=\sup _{(x, 0) \in \omega_{a}} x
$$

For $x \in\left(-x_{a}, x_{a}\right)$,

$$
\begin{aligned}
u_{a}(x, 0)>1>1 / 2=\phi_{0}(0) & \Longrightarrow\left\|u_{a}(x, \cdot)-\phi_{0}\right\|_{H^{1}(-1,1)} \geq C_{3}>0 \\
& \Longrightarrow J\left(u_{a}(x, \cdot)\right) \geq J\left(\phi_{0}\right)+C_{4} \text { with } C_{4}>0
\end{aligned}
$$

Therefore

$$
I_{a}\left(u_{\mathrm{a}}\right) \geq 2 \mathrm{a} J\left(\phi_{0}\right)+2 C_{4} x_{a}-C_{5}
$$

- Conclusion:
$2 a J\left(\phi_{0}\right)+2 C_{4} x_{a}-C_{5} \leq I_{a}\left(u_{a}\right) \leq 2 a J\left(\phi_{0}\right)+C_{1} \quad \Longrightarrow \quad x_{a} \leq C_{x}$

Step 5: convergence to the one-dimensional profile $\phi_{0}(y)=\left(1-y^{2}\right) / 2$

$$
\begin{gathered}
u_{a} \leq 1 \text { in } \Omega_{a} \backslash\left(-C_{x}, C_{x}\right) \times(-1,1) \\
\Longrightarrow \quad\left(f_{a}(s)=1+\mu_{a} g^{\prime}(s)=1 \text { for } s \leq 1\right) \\
\Delta u_{a}+1=0 \text { in } \Omega_{a} \backslash\left(-C_{x}, C_{x}\right) \times(-1,1)
\end{gathered}
$$

- For all $\varepsilon>0$, there exist $A \geq 1$ and $M \in[0, A / 2]$ s.t. for all $a \geq A$,

$$
\left|u_{a}(x, y)-\phi_{0}(y)\right| \leq \varepsilon \text { in }([-a+M,-M] \cup[M, a-M]) \times[-1,1]
$$

Proof: by contradiction and Liouville-type result for the solutions U of

$$
\left\{\begin{array}{rl}
\Delta U+1 & =0 \text { in } \mathbb{R} \times[-1,1] \\
U & =0 \text { on } \mathbb{R} \times\{ \pm 1\}
\end{array} \Longrightarrow U(x, y)=\phi_{0}(y)=\frac{1-y^{2}}{2}\right.
$$

Step 6: conclusion

$$
\begin{array}{ll}
P=\left(0, C_{y}\right) & \Longrightarrow u_{a}(P)>1 \\
Q_{a}=\left(\frac{a}{4}, \frac{C_{y}}{2}\right) & \Longrightarrow u_{a}\left(Q_{a}\right) \simeq \frac{1-\left(C_{y} / 2\right)^{2}}{2}=\frac{1}{2}-\frac{C_{y}^{2}}{8} \text { for } a \gg 1 \\
R_{a}=\left(\frac{a}{2}, 0\right) \quad \Longrightarrow u_{a}\left(R_{a}\right) \simeq \frac{1}{2} \text { for } a \gg 1
\end{array}
$$

Therefore,

$$
u_{a}\left(Q_{a}\right)<\min \left(u_{a}(P), u_{a}\left(R_{a}\right)\right) \text { for } a \gg 1
$$

For large a, the function u_{a} is not quasiconcave

For any fixed λ such that

$$
\frac{1}{2}-\frac{C_{y}^{2}}{8}<\lambda<\frac{1}{2}
$$

the superlevel set

$$
\Omega^{\lambda}=\left\{(x, y) \in \Omega_{a} ; u_{a}>\lambda\right\}
$$

is not convex for large a

Stability of u_{a} ?

Semi-stability:

$$
\forall \phi \in C_{c}^{\infty}(\Omega), \quad \int_{\Omega}|\nabla \phi|^{2}-\int_{\Omega} f^{\prime}(u) \phi^{2} \geq 0
$$

[Cabré, Chanillo]: if u is a semi-stable solution of (1) in a strictly convex domain Ω, then it has a unique critical point (its maximum) and the superlevel sets Ω^{λ} are convex for $\lambda \simeq \max u$

If $f^{\prime} \leq 0$ on the range of u, then u is semi-stable
If semi-stability implies quasiconcavity, then our solutions u_{a} would be unstable

For our problem in Ω_{a} :

$$
\left\{\begin{array}{l}
f_{a}^{\prime}\left(u_{a}\right)=0 \text { in the (large) set } \Omega_{a} \backslash\left(-C_{x}, C_{x}\right) \times(-1,1), \\
\left\{(x, y) \in \Omega_{a} ; f_{a}^{\prime}\left(u_{a}(x, y)\right)>0\right\} \text { is never empty, } \\
\left\{(x, y) \in \Omega_{a} ; f_{a}^{\prime}\left(u_{a}(x, y)\right)<0\right\} \text { is not empty in general }
\end{array}\right.
$$

CONVEX RINGS

Many positive examples in convex rings Ω :

- Harmonic functions $f(u)=0(\Delta u=0)$ [Gabriel, with $N=3$]
- p-capacitary functions $\left(\Delta_{p} u=0\right)$ [Lewis]
- $f(0)=0$ and f nonincreasing [Caffarelli, Spruck]
- Further results and generalizations using properties of the level sets of u or the rank of $D^{2} g(u)$ for some increasing g [Caffarelli, Friedman], [Korevaar], [Korevaar, Lewis]
- Minimal points of $(x, y) \mapsto u((x+y) / 2)-\min (u(x), u(y))$ [Caffarelli, Spruck], [Diaz, Kawohl], [Greco], [Kawohl]
- Comparison principle for the quasiconcave envelope of u [Bianchini, Longinetti, Salani], [Colesanti, Salani], [Cuoghi, Salani]
- General overview [Kawohl]

Starshaped ring: $\overline{\Omega_{2}} \subset \Omega_{1}$ are starshaped with respect to 0
Assume $f(0)=0$ and f is nonincreasing $\left(f^{\prime} \leq 0\right)$
Then $0<u<M$ in Ω (max. principle)
and $x \cdot \nabla u(x) \leq 0$ on $\partial \Omega$ (max. principle and starshapedness of Ω)
Call $v(x)=x \cdot \nabla u(x)$

$$
\Delta v=x \cdot \nabla \Delta u+2 \Delta u=-f^{\prime}(u) v-2 f(u)
$$

that is

$$
\Delta v+f^{\prime}(u) v=-2 f(u) \geq 0
$$

Then $v \leq 0$ in Ω and even $v<0$ in Ω (max. principle)
Then the superlevel sets Ω^{λ} are starshaped with respect to 0

A counterexample in some convex rings [Monneau, Shahgholian]

In dimension $N=2$, there are some convex rings and some functions $f \geq 0$ such that any solution u of (2) is not quasiconcave

The functions f are close to a Dirac mass concentrated at some real number $\lambda \in(0, M)$

The construction uses the existence of non-convex domains for some approximated free boundary problems [Acker]

Other counterexamples in arbitrary dimension $N \geq 2$
Functions $f:[0,+\infty) \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
f \text { is bounded from above: } f(s) \leq C, \tag{3}\\
s \mapsto \frac{f(s)}{s} \text { is decreasing over }(0,+\infty), \\
\text { either } f(0)>0, \text { or } f(0)=0 \text { and } \lim _{s \rightarrow 0^{+}} \frac{f(s)}{s}>\lambda_{1}\left(-\Delta, \Omega_{1}\right)
\end{array}\right.
$$

where $\lambda_{1}\left(-\Delta, \Omega_{1}\right)$ is the smallest eigenvalue of $-\Delta$ in Ω_{1} with Dirichlet boundary conditions on $\partial \Omega_{1}$

Theorem

Dimension $N \geq 2$. Let Ω_{1} be any smooth convex domain of \mathbb{R}^{N} and f any function satisfying (3). Then there is $M_{0} \geq 0$ such that, for all $M \geq M_{0}$, there are smooth convex rings $\Omega=\Omega_{1} \backslash \overline{\Omega_{2}}$ for which the problem

$$
\left\{\begin{array}{rlrl}
\Delta u+f(u) & =0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega_{1} \\
u=M & & \text { on } \partial \Omega_{2} \\
u>0 & & \text { in } \Omega
\end{array}\right.
$$

has a unique solution u, and u is not quasiconcave.

Examples of such functions f :

- $f(s)=\beta>0$ constant
- $f(s)=\gamma s-\delta s^{p}$ with $\gamma>\lambda_{1}\left(-\Delta, \Omega_{1}\right), \delta>0$ and $p>1$

For any fixed $\gamma>0$, the condition $\gamma>\lambda_{1}\left(-\Delta, \Omega_{1}\right)$ is satisfied if Ω_{1} contains a ball with a large enough radius

For these functions f, there is a unique solution u in the convex domain Ω_{1} [Berestycki] and u is log-concave [Lions]

Assume, in addition to (3), that there is $\mu>0$ such that

$$
f(s) \leq 0 \text { for all } s \geq \mu
$$

Then one can take $M_{0}=\mu$ in the theorem and the solutions u satisfy

$$
0<u<M \text { in } \Omega
$$

The boundary condition $u=M$ on $\partial \Omega_{2}$ can be replaced by $u=1$:

$$
\left\{\begin{array}{rll}
\Delta \tilde{u}+\tilde{f}(\tilde{u}) & =0 & \text { in } \Omega \\
\tilde{u} & =0 & \text { on } \partial \Omega_{1} \\
\tilde{u} & =1 & \text { on } \partial \Omega_{2} \\
\tilde{u} & >0 & \text { in } \Omega
\end{array}\right.
$$

with

$$
\tilde{u}=\frac{u}{M} \quad \text { and } \quad \tilde{f}(s)=\frac{f(M s)}{M}
$$

Proof of the theorem

Step 1: unique solution v in Ω_{1}

Step 2: unique solution u in $\Omega=\Omega_{1} \backslash \overline{\Omega_{2}}$

Choose
$\Omega_{2}=B\left(x_{0}, \varepsilon\right)$ with $0<v\left(x_{0}\right)<\max _{\Omega_{1}} v=M_{0}, \quad \varepsilon \ll 1, \quad$ and $M \geq M_{0}$
There exists a unique solution u of

$$
\left\{\begin{aligned}
\Delta u+f(u) & =0 & & \text { in } \Omega=\Omega_{1} \backslash \overline{\Omega_{2}}, \\
u & =0 & & \text { on } \partial \Omega_{1}, \\
u & =M & & \text { on } \partial \Omega_{2}, \\
u & >0 & & \text { in } \Omega
\end{aligned}\right.
$$

Step 3: passage to the limit as $\varepsilon \rightarrow 0^{+}$
Denote $\Omega_{2}=\Omega_{2}^{\varepsilon}$ and $u=u^{\varepsilon}$

$$
u^{\varepsilon} \rightarrow v \text { in } C_{\text {loc }}^{2}\left(\overline{\Omega_{1}} \backslash\left\{x_{0}\right\}\right) \text { as } \varepsilon \rightarrow 0^{+}
$$

Since $v\left(x_{0}\right)<\max _{\Omega_{1}} v$ and $M \geq \max _{\Omega_{1}} v$, it follows that the function u^{ε} is not quasiconcave for all $\varepsilon>0$ small enough

Similar result for more general equations

$$
\left\{\begin{array}{rlrl}
\nabla \cdot(A(x) \nabla u)+b(x) \cdot \nabla u+f(x, u) & =0 \quad & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega_{1} \\
u & =M \text { on } \partial \Omega_{2} \\
u & >0 \quad \text { in } \Omega
\end{array}\right.
$$

under similar assumptions on $f(x, s)$

