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Introduction

INTRODUCTION

Semilinear elliptic equation

Au+f(u)y=0 inQ

in a smooth bounded domain Q C R" (dimension N =2 or N > 2)
Function f locally Hélder continuous

Classical solution u
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Introduction

@ Convex domain Q

u=0 on 0%,
u>0 inQ
@ Convex ring
Q =\

with Q1, Q5 convex and Q, C O3

u=20 on 0¥,

u=M>0 on 9%,

u>0 in Q
Q

Q
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Introduction

How do the solutions u inherit the geometrical properties of 2 ?
Concavity or convexity of u are too strong properties: not true in general

What about the convexity of the superlevel sets of u ?

@ Convex domain Q:
Q* = {x € Q; u(x) > A}

e Convex ring Q = Q;\Q,. Extend u inside Q:
a(x) = { u(x) ifxeq,
M if x € Qy
and
Q= {x € Q; u(x) > A}
The superlevel set QO is convex by assumption: Q° = Q if Q is convex,
and Q° = Q; if Q is a convex ring.

If Q is a convex ring and u < M in Q, then ﬂ Q) = Q, is convex.
A<M
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Introduction

What about the other superlevel sets Q* for A > 0 ?

The function u is called quasiconcave if the superlevel sets Q* are convex
for all A > 0.

Question: is v always quasiconcave ?

P.-L. Lions (for convex domains Q):

"we believe that [...] for general f,
the [super]level sets of any solution u of [(1)] are convex"

(Two geometrical properties of solutions of semilinear problems, 1981)
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Convex domains

CONVEX DOMAINS

Many positive examples in convex domains Q:

@ Torsion problem f(u) =1 (Au+1=0): \/uis concave (= u is
quasiconcave) [Makar-Limanov, with N = 2]

e Eigenvalue problem f(u) = Au (Au+ Au = 0, principal eigenvalue
A > 0): uis log-concave, whence quasiconcave [Brascamp, Lieb]

o f(u) = AuP with A >0and 0 < p < 1. ul=P)/2 is concave (= u
is quasiconcave) [Keady, N = 2], [Kennington, N > 2]

@ Many generalizations and alternate proofs:

o g(u) is concave for some increasing g (elliptic maximum principle,
preservation of concavity of g(u) by a parabolic equation) [Caffarelli,
Spruck], [Greco, Porru], [Kawohl], [Kennington], [Korevaar], [Lions]

o curvature of the level sets of u, rank of the Hessian matrix of g(u)
[Acker, Payne, Philippin], [Bian, Guan, Ma, Xu], [Caffarelli,
Friedman], [Korevaar, Lewis], [Xu]

o general overview [Kawohl]
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Convex domains

A counterexample

Theorem

Dimension N = 2. There are smooth convex domains Q and C*
functions f : [0, +00) — R for which the problem

Au+f(u) = 0 inQQ,
u= 0 onodQ, (1)
u> 0 inQ

admits a solution u which is not quasiconcave.

f(s)

1

o f(s)>1foralls>0

@ Problem (1) also admits a quasiconcave solution v
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Convex domains

When €2 is a ball, then u is necessarily radially symmetric and decreasing,
whence quasiconcave [Gidas, Ni, Nirenberg]

The theorem cannot hold in dimension N =1 !

Domains Q of the theorem:

[ \
NG Y

-1
= u is symmetric in x and y, and decreasing in |x| and |y| [G-N-N]

Q

— the superlevel sets Q* are convex and symmetric in x and y, and
starshaped with respect to (0,0), and u has only one critical point
(more general results about uniqueness of critical points: [Cabré,
Chanillo], [Payne], [Sperb])

#= convexity of Q*
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Convex domains

Proof of the theorem

Step 1: notations

e Fixed C*°(R) function g such that
g=0on(—c0,1], g=1lon[2,+cc) and g’ >00on R

@ Smooth convex stadium-like domains €2,, symmetric in x and y

1

1

Figure: The domain €2,
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Convex domains

Step 2: unconstrained and constrained variational problems

e Functional I, defined in H}(£2,)

1
b= [ VP~ [ ueH@)

@ Unique minimizer v;,:

Av,+1 = 0 in Q,,
vy = 0 on 01,

The function v, is quasiconcave [Makar-Limanov] and

1-—
0 < va(x,y) < 2y in Q,

from the maximum principle
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Convex domains

@ Constraint

U, = {u € H3(Q); /

Q.

g(u) = 1}

The set U, is not empty (for a > 1: |Q,] > 1)

@ Existence of a constrained minimizer u, € U,:

I(uy) = ye]i(r}a 1 (u)

Euler-Lagrange equation:

Auy + fo(uy) = 0 in Q,,
u, = 0 on 99,

with
fa(s) = 1+ 1ag'(s)
Lagrange multiplier p1, € R. The function £, is of class C*°.
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Convex domains

Step 3: elementary properties of u,

@ Since u, € U, and g'(s) =0fors <1ands>2:
l—y2
2

maxu, >1 and  uu(x,y) < +2in €,

Q,

o A(u, — va) = —pag’(us) has a sign
Therefore, u, — v, has a sign, from the maximum principle:
0< vy, <u, in,

Hence 11, > 0 and f5(s) > 1 for all s:

fa(s)
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Convex domains

e [Gidas, Ni, Nirenberg] =
u, is even in x and y and decreasing in |x| and |y|

= unique critical point (0, 0)
and the superlevel sets of u, are symmetric and convex in x and y

(#= the superlevel sets are convex)

Since )

1—y - 1
2 — 2

and f, =1+ u,g’ =1 on [0, 1], the function v, obeys

vy < in Q,

Av, + f(va) =Av,+1=0

and v, is quasiconcave

We will show that u, is not quasiconcave when a is large enough
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Convex domains

Step 4: uniform estimates of the size of the superlevel set Q! of u,

wa = {(x,y) € Qs us(x,y) > 1}

0< sup |x|<C and 0<C, < sup |y
(x,y)€Ews, (x,y)Ew,

for some positive constants C, and C, independent of a > 1

Q

Figure: The superlevel set w,
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Convex domains

Proof of the key-lemma

@ The y-estimate easily follows from the x-estimate

Denote

Ya= sup |y|
(x.y)€w,

There holds

u; <land g(uy) =0 in Q\(—Cx, C) X (—¥a, Ya)

1:/ g(“a):/ g(ua) < 4Cy,
Q, Qam(fcx’cx)x(f)’a,)’a)

va>(@4C) 1t =¢ >0
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Convex domains

@ The x-estimate: upper bound of /,(u,)

Denote

The function ¢ is the unique minimizer of the energy in the section:

o) =3 [ Sordy— [ oy, o€ Hi-11)

Fixed nonnegative function w € C>°(IR?) such that
w=0in R*\(~1,1)® and w > 0in[-2/3,2/3]?

There is tg > 0 such that

/(1 o g(po(y) + tow(x,y)) dxdy = 1
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Convex domains

Test function w, € H}(Q,):

WB(X7Y) = d)O()/) Xa(X) + to W(va)

(y) + tow(x, y)
doly) /\ '

-a -é+1 1 1 a-i a
/ g(w,) = / g(w,) = / g(do(y) + tow(x, y)) dx dy = 1
Q. (-1,1)2 (-1,1)2

= w, € U, = (u, is a minimizer of I, in U,)
/a(ua) < Ia(Wa)

Explicit calculation:

1
Ia(Wa):E/Q |Vwa|2—/Q wy, =2aJ(po) + G

—
L(us) <2ad(go) + G



Convex domains

@ The x-estimate: lower bound of /,(u,)

2 a
hw) > [ (Bl -w)-cz [ suxne-c
(—aa)x(-1,1) ¥ 2

—a

Denote
Xs= sup |x|= sup x
(x,y)€w, (x,0)€w,

For x € (—xa, Xa),
Ua(x,0) > 1>1/2=¢o(0) = |lua(x,-) — dollp1(~1,1) = Gz >0
- J(Ua(X7 )) > J(¢0) + G4 with G4 >0

Therefore
L(ua) >2ad(do) +2CGxa— G

@ Conclusion:

2al(po) +2Cixa— Cs < I(uz) <2ad(po) + G = x5 < G
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Convex domains

Step 5: convergence to the one-dimensional profile ¢o(y)=(1—y?)/2

u; <1 in Q\ (-G, C) x (—1,1)

= (fi(s) =1+ pag'(s) =1fors <1)
Au,;+1=0 in 2, \ (-G, CG) x(—1,1)

@ For all € > 0, there exist A>1 and M € [0,A/2] s.t. for all a > A,

lua(x,y) — ¢o(y)| < ein ([~a+ M,-M]U[M,a— M]) x [-1,1]

Proof: by contradiction and Liouville-type result for the solutions U of

1—y
2

e U(XaY):¢0(Y):

AU+1 =0 in Rx[-1,1]
U= 0 on Rx{+1}
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Convex domains

Step 6: conclusion

“a TN\-Q R,
H R W S AP R > S
P=(0,C) = u,(P)>1
R L1-(GRP_1 QG
Qs (277) = u,(Q.) ~ 5 =2 38 fora>1
a
R, = (5,0) = u(Ry)~= fora>1

Therefore,

us(Qs) < min (us(P), us(R,)) for a>>1

For large a, the function u, is not quasiconcave
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Convex domains

For any fixed A such that

&

— <A<
8<

N —
N~

the superlevel set
Q* = {(x,y) € Qa; us > A}

is not convex for large a
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Convex domains

Stability of u, ?

Semi-stability:

Vo e CX(Q /IV¢I2 /f’(u)¢2zo
Q

[Cabré, Chanillo]: if u is a semi-stable solution of (1) in a strictly convex
domain Q, then it has a unique critical point (its maximum) and the
superlevel sets Q* are convex for A ~ max u

If f/ <0 on the range of u, then u is semi-stable

If semi-stability implies quasiconcavity, then our solutions u, would be
unstable

For our problem in €,:
f1(us) = 0 in the (large) set Q.\(—Cy, C) x (—1,1),
{(x,y) € Qa; f](ua(x,y)) >0} is never empty,

{(X y) € Q. fl(ua(x,y)) < 0} is not empty in general
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Convex rings

CONVEX RINGS

2
Q
Au+f(u) = 0 inQ,
u = 0 ondQ,
(2)
u = M on 09,
u> 0 inQ
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Convex rings

Many positive examples in convex rings Q:

@ Harmonic functions f(u) = 0 (Au = 0) [Gabriel, with N = 3]
@ p-capacitary functions (Ap,u = 0) [Lewis]
e f(0) =0 and f nonincreasing [Caffarelli, Spruck]

@ Further results and generalizations using properties of the level sets
of u or the rank of D?g(u) for some increasing g [Caffarelli,
Friedman], [Korevaar|, [Korevaar, Lewis]

e Minimal points of (x,y) — u((x + y)/2) — min(u(x), u(y))
[Caffarelli, Spruck], [Diaz, Kawohl], [Greco], [Kawohl]

e Comparison principle for the quasiconcave envelope of u [Bianchini,
Longinetti, Salani], [Colesanti, Salani], [Cuoghi, Salani]

o General overview [Kawohl]
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Convex rings

Starshaped ring: Q, C Q; are starshaped with respect to 0
Assume f(0) = 0 and f is nonincreasing (' < 0)

Then 0 < u < M in Q (max. principle)
and x - Vu(x) < 0 on 9Q (max. principle and starshapedness of Q)

Call v(x) = x - Vu(x)
Av =x-VAu+2Au = —f'(u)v — 2f(u)
that is

Av + f'(u)v = =2f(u) > 0

Then v < 0in Q and even v < 0 in Q (max. principle)

Then the superlevel sets Q* are starshaped with respect to 0
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Convex rings

A counterexample in some convex rings [Monneau, Shahgholian]

In dimension N = 2, there are some convex rings and some functions
f > 0 such that any solution u of (2) is not quasiconcave

The functions f are close to a Dirac mass concentrated at some real
number X\ € (0, M)

The construction uses the existence of non-convex domains for some
approximated free boundary problems [Acker]

Francois HAMEL



Convex rings

Other counterexamples in arbitrary dimension N > 2

Functions f : [0, +00) — R such that

f is bounded from above: f(s) < C,

f(s)

s —— s decreasing over (0, +00), (3)

f
either f(0) >0, or f(0) =0 and lim g > M (=4, Q)

s—0F

where \1(—A, Q) is the smallest eigenvalue of —A in Q; with Dirichlet
boundary conditions on 94
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Convex rings

Theorem

Dimension N > 2. Let 1 be any smooth convex domain of RN and f
any function satisfying (3). Then there is Mo > 0 such that, for all
M > My, there are smooth convex rings Q = ;1\, for which the

problem
Au+f(u) = 0 inQ,
u 0 on 0%y,
u = M ond,
u>0 inQ

has a unique solution u, and u is not quasiconcave.
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Convex rings

Examples of such functions f:

e f(s) =/ > 0 constant

o f(s)=rs—dsP with vy > A\ (—A,Q),0>0and p>1

For any fixed v > 0, the condition v > A1 (—A, Q) is satisfied if Q;
contains a ball with a large enough radius

For these functions f, there is a unique solution u in the convex
domain §; [Berestycki] and u is log-concave [Lions]

Assume, in addition to (3), that there is © > 0 such that
f(s) <0 foralls>pu
Then one can take My = p in the theorem and the solutions u satisfy

O<u<M inQ
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Convex rings

The boundary condition u = M on 02, can be replaced by v = 1:

Ai+f(i) = 0 inQ,
g = 0 on 0y,
] 1 on 09y,
o> 0 inQ,
with
E:% and f(s) = f(;\\”/ls)
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Convex rings

Proof of the theorem

Step 1: unique solution v in Q;

Av+f(v) = 0 inQy,
0 on 909y,
v > 0 in Ql

v
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Convex rings

Step 2: unique solution v in Q = Q;\Q,

Choose

Q) = B(xp,e) with 0 < v(x) <maxv=M, <1, and M> M,

Q
There exists a unique solution u of
Au+f(u) = 0 inQ=\D,
u = 0 on 0%y,
u = M on 0%,
u>0 inQ
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Convex rings

Step 3: passage to the limit as ¢ — 0"
Denote Q0 = Q5 and u = u®
vt = v oin G (Q\{x}) ase—0"

Since v(xp) < maxv and M > maxv, it follows that
Ql Ql

the function v is not quasiconcave for all ¢ > 0 small enough
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Convex rings

Similar result for more general equations

V- (A(x)Vu) + b(x) - Vu+f(x,u) = 0 inQ,
u 0 on 09,
u M on 09,
u>0 inQ

under similar assumptions on f(x, s)
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