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INTRODUCTION

Semilinear elliptic equation

∆u + f (u) = 0 in Ω

in a smooth bounded domain Ω ⊂ RN (dimension N = 2 or N ≥ 2)

Function f locally Hölder continuous

Classical solution u
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Convex domain Ω {
u = 0 on ∂Ω,

u > 0 in Ω

Convex ring
Ω = Ω1\Ω2

with Ω1, Ω2 convex and Ω2 ⊂ Ω1
u = 0 on ∂Ω1,

u = M > 0 on ∂Ω2,

u > 0 in Ω

1

2
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How do the solutions u inherit the geometrical properties of Ω ?

Concavity or convexity of u are too strong properties: not true in general

What about the convexity of the superlevel sets of u ?

Convex domain Ω:
Ωλ =

{
x ∈ Ω; u(x) > λ

}
Convex ring Ω = Ω1\Ω2. Extend u inside Ω2:

u(x) =

{ u(x) if x ∈ Ω,

M if x ∈ Ω2

and
Ωλ =

{
x ∈ Ω1; u(x) > λ

}
The superlevel set Ω0 is convex by assumption: Ω0 = Ω if Ω is convex,
and Ω0 = Ω1 if Ω is a convex ring.

If Ω is a convex ring and u < M in Ω, then
⋂
λ<M

Ωλ = Ω2 is convex.
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What about the other superlevel sets Ωλ for λ > 0 ?

The function u is called quasiconcave if the superlevel sets Ωλ are convex
for all λ ≥ 0.

Question: is u always quasiconcave ?

P.-L. Lions (for convex domains Ω):

"we believe that [...] for general f ,
the [super]level sets of any solution u of [(1)] are convex"

(Two geometrical properties of solutions of semilinear problems, 1981)
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CONVEX DOMAINS
Many positive examples in convex domains Ω:

Torsion problem f (u) = 1 (∆u + 1 = 0):
√

u is concave (=⇒ u is
quasiconcave) [Makar-Limanov, with N = 2]

Eigenvalue problem f (u) = λu (∆u + λu = 0, principal eigenvalue
λ > 0): u is log-concave, whence quasiconcave [Brascamp, Lieb]

f (u) = λup with λ > 0 and 0 < p < 1: u(1−p)/2 is concave (=⇒ u
is quasiconcave) [Keady, N = 2], [Kennington, N ≥ 2]

Many generalizations and alternate proofs:
g(u) is concave for some increasing g (elliptic maximum principle,
preservation of concavity of g(u) by a parabolic equation) [Caffarelli,
Spruck], [Greco, Porru], [Kawohl], [Kennington], [Korevaar], [Lions]
curvature of the level sets of u, rank of the Hessian matrix of g(u)
[Acker, Payne, Philippin], [Bian, Guan, Ma, Xu], [Caffarelli,
Friedman], [Korevaar, Lewis], [Xu]
general overview [Kawohl]
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A counterexample

Theorem
Dimension N = 2. There are smooth convex domains Ω and C∞
functions f : [0,+∞)→ R for which the problem

∆u + f (u) = 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω

(1)

admits a solution u which is not quasiconcave.

f(s)

s1 2

1

f (s) ≥ 1 for all s ≥ 0
Problem (1) also admits a quasiconcave solution v
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Remark
When Ω is a ball, then u is necessarily radially symmetric and decreasing,
whence quasiconcave [Gidas, Ni, Nirenberg]

The theorem cannot hold in dimension N = 1 !

Domains Ω of the theorem:

-a a

1

-1

0
a

=⇒ u is symmetric in x and y , and decreasing in |x | and |y | [G-N-N]

=⇒ the superlevel sets Ωλ are convex and symmetric in x and y , and
starshaped with respect to (0, 0), and u has only one critical point
(more general results about uniqueness of critical points: [Cabré,
Chanillo], [Payne], [Sperb])

6=⇒ convexity of Ωλ
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Proof of the theorem

Step 1: notations

Fixed C∞(R) function g such that
g = 0 on (−∞, 1], g = 1 on [2,+∞) and g ′ ≥ 0 on R

Smooth convex stadium-like domains Ωa, symmetric in x and y

-a a

1

-1

0
a

Figure: The domain Ωa
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Step 2: unconstrained and constrained variational problems

Functional Ia defined in H1
0 (Ωa)

Ia(u) =
1
2

∫
Ωa

|∇u|2 −
∫

Ωa

u, u ∈ H1
0 (Ωa)

Unique minimizer va:{
∆va + 1 = 0 in Ωa,

va = 0 on ∂Ωa

The function va is quasiconcave [Makar-Limanov] and

0 < va(x , y) <
1− y2

2 in Ωa

from the maximum principle
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Constraint
Ua =

{
u ∈ H1

0 (Ωa);

∫
Ωa

g(u) = 1
}

The set Ua is not empty (for a ≥ 1: |Ωa| > 1)

Existence of a constrained minimizer ua ∈ Ua:

Ia(ua) = min
u∈Ua

Ia(u)

Euler-Lagrange equation:{
∆ua + fa(ua) = 0 in Ωa,

ua = 0 on ∂Ωa,

with
fa(s) = 1 + µag ′(s)

Lagrange multiplier µa ∈ R. The function fa is of class C∞.
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Step 3: elementary properties of ua

Since ua ∈ Ua and g ′(s) = 0 for s ≤ 1 and s ≥ 2:

max
Ωa

ua > 1 and ua(x , y) <
1− y2

2 + 2 in Ωa

∆(ua − va) = −µag ′(ua) has a sign

Therefore, ua − va has a sign, from the maximum principle:

0 < va < ua in Ωa

Hence µa > 0 and fa(s) ≥ 1 for all s:

f (s)

s1 2

1

a
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[Gidas, Ni, Nirenberg] =⇒

ua is even in x and y and decreasing in |x | and |y |

=⇒ unique critical point (0, 0)

and the superlevel sets of ua are symmetric and convex in x and y

(6=⇒ the superlevel sets are convex)

Since
va <

1− y2

2 ≤ 1
2 in Ωa

and fa = 1 + µag ′ = 1 on [0, 1], the function va obeys

∆va + fa(va) = ∆va + 1 = 0

and va is quasiconcave

We will show that ua is not quasiconcave when a is large enough
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Step 4: uniform estimates of the size of the superlevel set Ω1 of ua

ωa =
{

(x , y) ∈ Ωa; ua(x , y) > 1
}

Key-lemma

0 ≤ sup
(x ,y)∈ωa

|x | < Cx and 0 < Cy < sup
(x ,y)∈ωa

|y |

for some positive constants Cx and Cy independent of a ≥ 1

a

-C
-C

C

Cx x
y

y u  >1a

a

u  1a

Figure: The superlevel set ωa
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Proof of the key-lemma

The y -estimate easily follows from the x -estimate

Denote
ya = sup

(x ,y)∈ωa

|y |

There holds

ua ≤ 1 and g(ua) = 0 in Ωa \ (−Cx ,Cx )× (−ya, ya)

=⇒

1 =

∫
Ωa

g(ua) =

∫
Ωa ∩ (−Cx ,Cx )×(−ya,ya)

g(ua) < 4Cx ya

=⇒
ya > (4Cx )−1 =: Cy > 0
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The x -estimate: upper bound of Ia(ua)

Denote
φ0(y) =

1− y2

2
The function φ0 is the unique minimizer of the energy in the section:

J(φ) =
1
2

∫ 1

−1
φ′(y)2dy −

∫ 1

−1
φ(y)dy , φ ∈ H1

0 (−1, 1)

Fixed nonnegative function w ∈ C∞(R2) such that

w = 0 in R2\(−1, 1)2 and w > 0 in [−2/3, 2/3]2

There is t0 > 0 such that∫
(−1,1)2

g(φ0(y) + t0w(x , y)) dx dy = 1
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Test function wa ∈ H1
0 (Ωa):

wa(x , y) = φ0(y)χa(x) + t0 w(x , y)

-a -a+1 -1 1 a-1 a∫
Ωa

g(wa) =

∫
(−1,1)2

g(wa) =

∫
(−1,1)2

g(φ0(y) + t0w(x , y)) dx dy = 1

=⇒ wa ∈ Ua =⇒ (ua is a minimizer of Ia in Ua)
Ia(ua) ≤ Ia(wa)

Explicit calculation:

Ia(wa) =
1
2

∫
Ωa

|∇wa|2 −
∫

Ωa

wa = 2 a J(φ0) + C1

=⇒
Ia(ua) ≤ 2 a J(φ0) + C1
François HAMEL www.latp.univ-mrs.fr/˜hamel
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The x -estimate: lower bound of Ia(ua)

Ia(ua) ≥
∫

(−a,a)×(−1,1)

( |∇ua|2

2 − ua

)
−C2 ≥

∫ a

−a
J(ua(x , ·)) dx −C2

Denote
xa = sup

(x ,y)∈ωa

|x | = sup
(x ,0)∈ωa

x

For x ∈ (−xa, xa),

ua(x , 0) > 1 > 1/2 = φ0(0) =⇒ ‖ua(x , ·)− φ0‖H1(−1,1) ≥ C3 > 0
=⇒ J(ua(x , ·)) ≥ J(φ0) + C4 with C4 > 0

Therefore
Ia(ua) ≥ 2 a J(φ0) + 2C4 xa − C5

Conclusion:

2 a J(φ0) + 2C4 xa − C5 ≤ Ia(ua) ≤ 2 a J(φ0) + C1 =⇒ xa ≤ Cx
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Step 5: convergence to the one-dimensional profile φ0(y)=(1−y2)/2

ua ≤ 1 in Ωa \ (−Cx ,Cx )× (−1, 1)

=⇒ (fa(s) = 1 + µag ′(s) = 1 for s ≤ 1)

∆ua + 1 = 0 in Ωa \ (−Cx ,Cx )× (−1, 1)

For all ε > 0, there exist A ≥ 1 and M ∈ [0,A/2] s.t. for all a ≥ A,

|ua(x , y)− φ0(y)| ≤ ε in
(
[−a + M,−M] ∪ [M, a −M]

)
× [−1, 1]

Proof: by contradiction and Liouville-type result for the solutionsU of{
∆U + 1 = 0 in R× [−1, 1]

U = 0 on R× {±1}
=⇒ U(x , y) = φ0(y) =

1− y2

2

François HAMEL www.latp.univ-mrs.fr/˜hamel



Introduction
Convex domains

Convex rings

Step 6: conclusion

P Q R
a/4 a/2

a a
a

P = (0,Cy ) =⇒ ua(P) > 1

Qa =
(a
4 ,

Cy
2

)
=⇒ ua(Qa) ' 1− (Cy/2)2

2 =
1
2 −

C2
y
8 for a >> 1

Ra =
(a
2 , 0
)

=⇒ ua(Ra) ' 1
2 for a >> 1

Therefore,

ua(Qa) < min
(
ua(P), ua(Ra)

)
for a >> 1

For large a, the function ua is not quasiconcave
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For any fixed λ such that

1
2 −

C2
y
8 < λ <

1
2

the superlevel set

Ωλ =
{

(x , y) ∈ Ωa; ua > λ}

is not convex for large a
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Stability of ua ?

Semi-stability:

∀φ ∈ C∞c (Ω),

∫
Ω

|∇φ|2 −
∫

Ω

f ′(u)φ2 ≥ 0

[Cabré, Chanillo]: if u is a semi-stable solution of (1) in a strictly convex
domain Ω, then it has a unique critical point (its maximum) and the
superlevel sets Ωλ are convex for λ ' max u

If f ′ ≤ 0 on the range of u, then u is semi-stable

If semi-stability implies quasiconcavity, then our solutions ua would be
unstable

For our problem in Ωa:
f ′a (ua) = 0 in the (large) set Ωa\(−Cx ,Cx )× (−1, 1),{

(x , y) ∈ Ωa; f ′a (ua(x , y)) > 0
}

is never empty,{
(x , y) ∈ Ωa; f ′a (ua(x , y)) < 0

}
is not empty in general
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CONVEX RINGS

1

2


∆u + f (u) = 0 in Ω,

u = 0 on ∂Ω1,

u = M on ∂Ω2,

u > 0 in Ω

(2)
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Many positive examples in convex rings Ω:

Harmonic functions f (u) = 0 (∆u = 0) [Gabriel, with N = 3]

p-capacitary functions (∆pu = 0) [Lewis]

f (0) = 0 and f nonincreasing [Caffarelli, Spruck]

Further results and generalizations using properties of the level sets
of u or the rank of D2g(u) for some increasing g [Caffarelli,
Friedman], [Korevaar], [Korevaar, Lewis]

Minimal points of (x , y) 7→ u((x + y)/2)−min(u(x), u(y))
[Caffarelli, Spruck], [Diaz, Kawohl], [Greco], [Kawohl]

Comparison principle for the quasiconcave envelope of u [Bianchini,
Longinetti, Salani], [Colesanti, Salani], [Cuoghi, Salani]

General overview [Kawohl]
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Starshaped ring: Ω2 ⊂ Ω1 are starshaped with respect to 0

Assume f (0) = 0 and f is nonincreasing (f ′ ≤ 0)

Then 0 < u < M in Ω (max. principle)
and x · ∇u(x) ≤ 0 on ∂Ω (max. principle and starshapedness of Ω)

Call v(x) = x · ∇u(x)

∆v = x · ∇∆u + 2∆u = −f ′(u)v − 2f (u)

that is

∆v + f ′(u)v = −2f (u) ≥ 0

Then v ≤ 0 in Ω and even v < 0 in Ω (max. principle)

Then the superlevel sets Ωλ are starshaped with respect to 0
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A counterexample in some convex rings [Monneau, Shahgholian]

In dimension N = 2, there are some convex rings and some functions
f ≥ 0 such that any solution u of (2) is not quasiconcave

The functions f are close to a Dirac mass concentrated at some real
number λ ∈ (0,M)

The construction uses the existence of non-convex domains for some
approximated free boundary problems [Acker]

François HAMEL www.latp.univ-mrs.fr/˜hamel
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Other counterexamples in arbitrary dimension N ≥ 2

Functions f : [0,+∞)→ R such that

f is bounded from above: f (s) ≤ C ,

s 7→ f (s)

s is decreasing over (0,+∞),

either f (0) > 0, or f (0) = 0 and lim
s→0+

f (s)

s > λ1(−∆,Ω1)

(3)

where λ1(−∆,Ω1) is the smallest eigenvalue of −∆ in Ω1 with Dirichlet
boundary conditions on ∂Ω1
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Theorem
Dimension N ≥ 2. Let Ω1 be any smooth convex domain of RN and f
any function satisfying (3). Then there is M0 ≥ 0 such that, for all
M ≥ M0, there are smooth convex rings Ω = Ω1\Ω2 for which the
problem 

∆u + f (u) = 0 in Ω,

u = 0 on ∂Ω1,

u = M on ∂Ω2,

u > 0 in Ω

has a unique solution u, and u is not quasiconcave.
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Examples of such functions f :

f (s) = β > 0 constant

f (s) = γs − δsp with γ > λ1(−∆,Ω1), δ > 0 and p > 1

For any fixed γ > 0, the condition γ > λ1(−∆,Ω1) is satisfied if Ω1
contains a ball with a large enough radius

For these functions f , there is a unique solution u in the convex
domain Ω1 [Berestycki] and u is log-concave [Lions]

Assume, in addition to (3), that there is µ > 0 such that

f (s) ≤ 0 for all s ≥ µ

Then one can take M0 = µ in the theorem and the solutions u satisfy

0 < u < M in Ω
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The boundary condition u = M on ∂Ω2 can be replaced by u = 1:


∆ũ + f̃ (ũ) = 0 in Ω,

ũ = 0 on ∂Ω1,

ũ = 1 on ∂Ω2,

ũ > 0 in Ω,

with
ũ =

u
M and f̃ (s) =

f (Ms)

M
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Introduction
Convex domains

Convex rings

Proof of the theorem

Step 1: unique solution v in Ω1
∆v + f (v) = 0 in Ω1,

v = 0 on ∂Ω1,

v > 0 in Ω1

v

1
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Step 2: unique solution u in Ω = Ω1\Ω2

Choose
Ω2 = B(x0, ε) with 0 < v(x0) < max

Ω1

v = M0, ε << 1, and M ≥ M0

There exists a unique solution u of
∆u + f (u) = 0 in Ω = Ω1\Ω2,

u = 0 on ∂Ω1,

u = M on ∂Ω2,

u > 0 in Ω

v

1

u

2

M
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Step 3: passage to the limit as ε→ 0+

Denote Ω2 = Ωε
2 and u = uε

uε → v in C2
loc
(
Ω1\{x0}

)
as ε→ 0+

Since v(x0) < max
Ω1

v and M ≥ max
Ω1

v , it follows that

the function uε is not quasiconcave for all ε > 0 small enough
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Similar result for more general equations


∇ · (A(x)∇u) + b(x) · ∇u + f (x , u) = 0 in Ω,

u = 0 on ∂Ω1,

u = M on ∂Ω2,

u > 0 in Ω

under similar assumptions on f (x , s)
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