On the Lane-Emden equation

Louis Dupaigne
Institut Camille Jordan, UMR CNRS 5208, Lyon, France

Universal estimates and Liouville-type theorems

Local regularity theory for semilinear elliptic equations

Consider the Lane-Emden equation

$$
\begin{equation*}
-\Delta u=|u|^{p-1} u \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

and more generally any semilinear elliptic equation of the form

$$
\begin{equation*}
-L u=f(x, u, \nabla u) \quad \text { in } \Omega \tag{2}
\end{equation*}
$$

where Ω is any open set of euclidean space and

- L scales like a laplacian i.e.

$$
L u=a_{i j}(x) \partial_{i j} u+b_{i}(x) \partial_{i} u+c(x) u
$$

is a uniformly elliptic operator of order 2 with smooth coefficients and ellipticity constants λ, Λ.

- f scales algebraically at infinity i.e. for all $x \in \Omega, t \geq 0, \xi \in \mathbb{R}^{n}$,

$$
0 \leq f(x, t, \xi) \leq C\left(1+t^{p}+|\xi|^{\frac{2 p}{p+1}}\right)
$$

and for all $x \in \bar{\Omega}$,

$$
\lim _{t \rightarrow+\infty, y \in \Omega \rightarrow x} \frac{f\left(y, t, t^{\frac{p+1}{2}} \xi\right)}{t^{p}}=\ell(x) \in(0,+\infty)
$$

locally uniformly in ξ.

Theorem (Polacik-Quittner-Souplet, Duke, 2007)

The following assertions are equivalent

1. The Lane-Emden equation (1) has no positive solution
2. There exists constants $C_{i}=C_{i}(\lambda, \Lambda, b, c, n, f)>0$ such that for all positive solutions of (2)

$$
u(x) \leq C_{1}+C_{2} \operatorname{dist}(x, \partial \Omega)^{-\frac{2}{p-1}}
$$

Furthermore, if $f(u)=u^{p}, C_{1}=0$.
$2 \Longrightarrow 1$ is easy. The reverse implication uses a rescaling procedure [Gidas-Spruck, Comm. PDE, 1981] and a doubling lemma [Gromov, Geom. Funct. Anal, 1991]

Critical exponents

We say that p lies below the critical Sobolev exponent if $p<p_{S}(n)$, where

$$
p_{S}(n)=\left\{\begin{aligned}
+\infty & \text { if } n \leq 2 \\
\frac{n+2}{n-2} & \text { if } n \geq 3
\end{aligned}\right.
$$

and p lies below the Joseph-Lundgren exponent if $p<p_{c}(n)$, where

$$
p_{c}(n)=\left\{\begin{aligned}
+\infty & \text { if } n \leq 10 \\
\frac{(n-2)^{2}-4 n+8 \sqrt{n-1}}{(n-2)(n-10)} & \text { if } n \geq 11
\end{aligned}\right.
$$

Critical exponents

The Lane-Emden equation (1) is scale-invariant: if u is a solution, then so is

$$
u^{\lambda}(x)=\lambda^{\frac{2}{\rho-1}} u(\lambda x)
$$

Further, it is variational, with energy functional given by

$$
E_{0}(u ; B)=\int_{B}\left\{\frac{1}{2}|\nabla u|^{2}-\frac{1}{p+1}|u|^{p+1}\right\} d x
$$

- The Sobolev exponent is the unique exponent such that

$$
E_{0}\left(u ; B_{\lambda}\right)=E_{0}\left(u^{\lambda} ; B_{1}\right)
$$

- It is natural to consider solutions preserving the scale invariance i.e. homogeneous solutions.

In particular, there exists a singular solution of the form

$$
u_{s}(x)=A|x|^{-\frac{2}{\rho-1}} .
$$

Definition

A solution to the Lane-Emden equation is said to be stable if the second variation of the energy is nonnegative i.e.

$$
\int_{\mathbb{R}^{n}} p|u|^{p-1} \varphi^{2} d x \leq \int_{\mathbb{R}^{n}}|\nabla \varphi|^{2} d x \quad \text { for all } \varphi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)
$$

It has finite Morse index if the above inequality fails at most on a (punctured) finite dimensional subspace.
Hence, u_{s} is stable if

$$
p A^{p-1} \int_{\mathbb{R}^{n}} \frac{\varphi^{2}}{|x|^{2}} d x \leq \int_{\mathbb{R}^{n}}|\nabla \varphi|^{2} d x
$$

which holds, in virtue of Hardy's inequality if and only if

$$
p A^{p-1} \leq \frac{(n-2)^{2}}{4} \Longleftrightarrow p \geq p_{c}(n) .
$$

Liouville theorems

1. If $p<p_{\mathcal{S}}(n)$, the Lane-Emden equation has no positive solution [Gidas-Spruck, Comm. PDE, 1981]
2. If $p=p_{S}(n)$, up to rescaling and translation, the positive solution is unique, thus radial [Caffarelli-Gidas-Spruck, CPAM, 1989]
3. If $p<p_{c}(n), p \neq p_{S}(n)$, there is no nontrivial solution of finite Morse index [Farina, JMPA, 2007]
4. Conjecture [Wei, 2013] : if $p_{c}(n) \leq p<p_{c}(n-1)$, up to rescaling and translation, there is a unique stable solution, thus radial

Wei's conjecture is motivated by the fact that for $p<p_{c}(n-1)$, the nonradial function $\tilde{u}_{s}(x)=A\left|x^{\prime}\right|^{-\frac{2}{p-1}}$ is unstable. For $p_{S}(n-1)<p<p_{c}(n-1), \exists \infty^{\prime}$ ly many singular sol's, asymptotic to \tilde{u}_{s}, unstable as such, see [Dancer-Guo-Wei, Indiana Math J, 2013]

Partial regularity in the supercritical cases

1. If $p \geq p_{S}(n)$ and $u>0$ is a (local) stationary solution, then $u \in C^{2}(\Omega \backslash \Sigma)$, where Σ is a closed set such that

$$
\operatorname{cap}_{2, p^{\prime}}(\Sigma)=0
$$

[Adams, EJDE, 2012]
2. If $p \geq p_{c}(n)$ and $u \in H_{\text {loc }}^{1}(\Omega)$ has finite Morse index,

$$
\mathcal{H}_{\operatorname{dim}}(\Sigma) \leq N-2 \frac{p+\gamma}{p-1}
$$

with $\gamma=2 p+2 \sqrt{p(p-1)}-1$.
[Dávila-D-Farina, JFA 2010]

Other nonlinearities

1. If $f(u)=e^{u}, N=2$ and $\int_{\mathbb{R}^{2}} e^{u}<\infty$, then up to rescaling and translation, the solution is unique and radial [Chen-Li, Duke, 1981]
2. If $f(u)=e^{u}, 3 \leq N \leq 9$, no u has finite Morse index [Dancer-Farina, Proc. Amer. Math. Soc., 2009]
3. If $f \geq 0,1 \leq N \leq 4$, every bounded stable solution is constant [D-Farina, JEMS, 2010].
4. If $1 \leq N \leq 2$, every stable solution with bounded gradient is 1D [Berestycki-Caffarelli-Nirenberg, Ann. Scuola Norm. Sup. Pisa, 1997]

The Lane-Emden system

1. Biharmonic Lane-Emden and Liouville eq. : [C.S. Lin, Comment Math. Helv., 1998], [Wei-Xu, Math. Ann., 1999], [D-Ghergu-Goubet-Warnault, ARMA 2012], [Davila-D-Wang-Wei, arxiv].
2. Lane-Emden system not yet understood : see [Mitidieri, CPDE 1993], [de Figueiredo-Felmer, Ann. Sc. Norm. Super. Pisa 1994], [Serrin-Zou, Atti Semin. Mat. Fis. Univ.Modena 1998], [Busca-Manasevich, Indiana 2002], [Polacik-Quittner-Souplet, Duke 2007], [Souplet, Adv Math 2009], [Chen-D-Ghergu, DCDS-A 2013], [Cowan, arxiv].

The fractional Lane-Emden equation

For $s \in(0,1)$ and $p>1$, consider the equation

$$
(-\Delta)^{s} u=|u|^{p-1} u \quad \text { in } \mathbb{R}^{n}
$$

where

$$
\begin{gathered}
u \in C^{2 \sigma}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n},(1+|x|)^{n+2 s} d x\right), 0<s<\sigma<1 \\
(-\Delta)^{s} u(x)=c_{n, s} P V \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y
\end{gathered}
$$

Warning 1: many nonlinear diffusion operators

There are many nonlocal diffusion operators and the fractional Lane-Emden equation is not universal, as in the local case.
For example, take a Lévy symbol of the form

$$
\psi(\xi)=\int_{S^{n-1}}|\xi \cdot \omega|^{2 s} \mu(d \omega)
$$

where μ is a positive measure on S^{n-1}.

- The fractional Laplacian corresponds to the choice of the uniform measure
- The process $\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)$, where X_{t}^{i} are independent copies of a (linear) symetric α-stable process ($\alpha=2 s$) corresponds to the choice $\mu=\sum_{i=1}^{n} \delta_{e_{i}}$. It is generated by

$$
L u(x)=\sum_{i=1}^{n} \int_{\mathbb{R}} \frac{u(x)-u\left(x+h e_{i}\right)}{|h|^{1+2 s}} d h .
$$

Warning 2: (linear) boundary regularity is delicate Theorem (Ros-Oton and Serra, JMPA 2013)
 There exists $\alpha \in(0,1)$ such that for $\psi \in L^{\infty}(\Omega)$, have

$$
\left\|\varphi / \delta^{s}\right\|_{C^{\alpha}(\Omega)} \leq C\|\psi\|_{L^{\infty}(\Omega)}
$$

where

$$
\left\{\begin{align*}
(-\Delta)^{s} \varphi=\psi & \text { in } \Omega \tag{3}\\
\varphi=0 & \text { in } \mathbb{R}^{n} \backslash \Omega
\end{align*}\right.
$$

$$
u_{s}(x)=\frac{c_{n, s}}{\left(1-|x|^{2}\right)_{+}^{1-s}} \quad \text { solves } \quad\left\{\begin{aligned}
(-\Delta)^{s} u & =0
\end{aligned} \begin{array}{rl}
& \text { in } B, \\
u & =0
\end{array} \text { in } \mathbb{R}^{n} \backslash \bar{B} .\right.
$$

Theorem (Abatangelo, arxiv 2013)
The problem

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =f \quad \text { in } \Omega \\
u & =g \quad \text { in } \mathbb{R}^{n} \backslash \bar{\Omega} \\
\delta^{1-s} u & =h \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable. Given φ solving (3) for some $\psi \in C_{c}^{\infty}(\Omega)$, Green's indentity is

$$
\int_{\Omega} u(-\Delta)^{s} \varphi=\int_{\Omega} \varphi(-\Delta)^{s} u-\int_{\Omega^{c}} u(-\Delta)^{s} \phi+\int_{\partial \Omega} a(x)\left(\delta^{1-s} u\right)\left(\frac{\varphi}{\delta^{s}}\right) .
$$

Basic properties of the fractional Lane-Emden eq.

The equation

$$
(-\Delta)^{s} u=|u|^{p-1} u \quad \text { in } \mathbb{R}^{n}
$$

- is scale invariant: if u is a solution, then so is

$$
u_{\lambda}(x)=\lambda^{\frac{2 s}{p-1}} u(\lambda x), \quad x \in \mathbb{R}^{N}, \lambda>0
$$

- is variational with energy functional given by

$$
\int_{\mathbb{R}^{n}}\left\{\frac{1}{2}\left|(-\Delta)^{s / 2} u\right|^{2}-\frac{1}{p+1}|u|^{p+1}\right\} d x
$$

Critical exponents

We say that p lies below the critical Sobolev exponent if $p<p_{S}(n)$, where

$$
p_{S}(n)=\left\{\begin{aligned}
+\infty & \text { if } n \leq 2 s \\
\frac{n+2 s}{n-2 s} & \text { if } n>2 s
\end{aligned}\right.
$$

and p lies below the Joseph-Lundgren exponent if

$$
p \frac{\Gamma\left(\frac{n}{2}-\frac{s}{p-1}\right) \Gamma\left(s+\frac{s}{p-1}\right)}{\Gamma\left(\frac{s}{p-1}\right) \Gamma\left(\frac{n-2 s}{2}-\frac{s}{p-1}\right)}>\frac{\Gamma\left(\frac{n+2 s}{4}\right)^{2}}{\Gamma\left(\frac{n-2 s}{4}\right)^{2}} .
$$

For p supercritical, the above condition fails if and only if the singular solution

$$
u_{s}(x)=A|x|^{-\frac{2 s}{p-1}} \text { is stable }
$$

Known Liouville theorems

1. If $p<p_{S}(n)$, the Lane-Emden equation has no positive solution [Chen-Li-Ou, CPAM 2006 and Y.Y. Li, JEMS 2004]
2. If $p=p_{S}(n)$, up to rescaling and translation, the positive solution is unique, thus radial [Chen-Li-Ou, CPAM 2006 and Y.Y. Li, JEMS 2004]

Our Liouville theorem

Theorem ([Dávila-D-Wei])
Let u be a solution with finite Morse index.

- If p lies below the Joseph-Lundgren exponent, $p \neq p_{S}(n)$, then $u \equiv 0$;
- If $p=p_{S}(n)$, then u has finite energy i.e.

$$
\int_{\mathbb{R}^{n}}\left|(-\Delta)^{s / 2} u\right|^{2} d x=\int_{\mathbb{R}^{n}}|u|^{p+1} d x<+\infty
$$

If in addition u is stable, then in fact $u \equiv 0$.

The proof

[Bernstein, Comm. Soc. Math. de Kharkov, 1915]

Theorem
Let $N \leq 7$. Assume $u \in C^{2}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ is a solution of the minimal surface equation in \mathbb{R}^{N}. Then, the graph of u is a hyperplane.

Remark

The original proof of Bernstein, in dimension $N=2$, contained a gap, discovered and fixed by [Hopf, Proc. Amer. Math. Soc., 1950]. The case $N=3$ is due to [De Giorgi, Ann. Scuola Norm.
Sup. Pisa, 1965], $N=4$ to [Almgren, Ann. of Math., 1966], $N \leq 7$ to [Simon, Ann. of Math., 1968]. A counter-example was found by [Bombieri-De Giorgi-Giusti, Invent. Math., 1969] for $N \geq 8$. An important step in the proofs is the following result due to Fleming:

Theorem ([Fleming, Rend. Circ. Mat. Palermo, 1962])

 If there exists a nonplanar entire minimal graph, then there exists a singular area-minimizing hypercone.
sketch of the proof of our theorem

- I will discuss only the case where p supercritical and u is stable, i.e. for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
p \int_{\mathbb{R}^{n}}|u|^{p-1} \varphi^{2} d x \leq\|\varphi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}^{2}
$$

- Estimate solutions in the $L^{p+1} \cap H^{s}$ norm (Cacciopoli or energy method)
- Localize the problem by extension in the half-space \mathbb{R}_{+}^{n+1}.
- Derive a monotonicity formula $E=E(r)$.
- Consider the blow-down (weak) limit

$$
\bar{u}^{\infty}(x)=\lim _{\lambda \rightarrow \infty} \lambda^{\frac{2 s}{\rho-1}} \bar{u}(\lambda x)
$$

- \bar{u}^{∞} satisfies $E(r) \equiv$ const. Hence, \bar{u}^{∞} is a homogeneous stable solution
- Prove that such solutions are trivial if p is below $p_{c}(n)$, by analyzing the equation on the half-sphere of \mathbb{R}_{+}^{n+1}.
- Using the monotonicity formula again, prove that in fact \bar{u} is trivial.

Step 1: energy estimate

Lemma

For $m>n / 2$ and $x \in \mathbb{R}^{n}$, let

$$
\eta(x)=\left(1+|x|^{2}\right)^{-m / 2} \quad \text { and } \quad \rho(x)=\int_{\mathbb{R}^{n}} \frac{(\eta(x)-\eta(y))^{2}}{|x-y|^{n+2 s}} d y
$$

Then, there exists a constant $C=C(n, s, m)>0$ such that

$$
\rho(x) \leq C\left(1+|x|^{2}\right)^{-\frac{n}{2}-s}
$$

Lemma
Let u be a stable solution i.e. for all φ,

$$
p \int_{\mathbb{R}^{n}}|u|^{p-1} \varphi^{2} d x \leq\|\varphi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}^{2}
$$

Assume that $m \in\left(\frac{n}{2}, \frac{n}{2}+\frac{s}{2}(p+1)\right)$. Take η as above. Then, there exists a constant $C=C(n, p, s, m)>0$ such that

$$
\int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x+\frac{1}{p}\|u \eta\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}^{2} \leq C .
$$

$$
(-\Delta)^{s} u=|u|^{p-1} u \quad \times u \eta^{2}
$$

Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x & =\int_{\mathbb{R}^{n}}(-\Delta)^{s} u u \eta^{2} d x \\
& =\int_{\mathbb{R}^{n}}(-\Delta)^{s / 2} u(-\Delta)^{s / 2}\left(u \eta^{2}\right) d x \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))\left(u(x) \eta(x)^{2}-u(y) \eta(y)^{2}\right)}{|x-y|^{n+2 s}} d x d y \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{u^{2}(x) \eta^{2}(x)-u(x) u(y)\left(\eta^{2}(x)+\eta^{2}(y)\right)+u^{2}(y) \eta^{2}(y)}{|x-y|^{n+2 s}} d x d y \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x) \eta(x)-u(y) \eta(y))^{2}-(\eta(x)-\eta(y))^{2} u(x) u(y)}{|x-y|^{n+2 s}} d x d y \\
& =\|u \eta\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(\eta(x)-\eta(y))^{2} u(x) u(y)}{|x-y|^{n+2 s}} d x d y
\end{aligned}
$$

Using the inequality $2 a b \leq a^{2}+b^{2}$, we deduce that

$$
\|u \eta\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}^{2}-\int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x \leq \int_{\mathbb{R}^{n}} u^{2} \rho d x
$$

Since u is stable, we deduce that

$$
(p-1) \int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x \leq \int_{\mathbb{R}^{n}} u^{2} \rho d x
$$

Going back, it follows that

$$
\frac{1}{p}\|u \eta\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}^{2}+\int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x \leq \frac{2}{p-1} \int_{\mathbb{R}^{n}} u^{2} \rho d x
$$

Now,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u^{2} \rho d x & =\int_{\mathbb{R}^{n}} u^{2} \rho \eta^{-\frac{4}{p+1}} \eta^{\frac{4}{p+1}} d x \\
& \leq\left(\int_{\mathbb{R}^{n}}|u|^{p+1} \eta^{2} d x\right)^{\frac{2}{p+1}}\left(\int_{\mathbb{R}^{n}} \rho^{\frac{p+1}{p-1}} \eta^{-\frac{4}{p-1}} d x\right)^{\frac{p-1}{p+1}}
\end{aligned}
$$

By technical lemma,

$$
\int_{\mathbb{R}^{n}} \rho^{\frac{p+1}{p-1}} \eta^{-\frac{4}{\rho-1}} d x \leq C \int_{\mathbb{R}^{n}}\left(1+|x|^{2}\right)^{-\left(\frac{n}{2}+s\right) \frac{p+1}{p-1}+\frac{2 m}{\rho-1}} d x
$$

The integral is finite since $m<\frac{n}{2}+\frac{s}{2}(p+1)$ and the lemma follows easily.

Step 2: localizing the problem

Theorem (Spitzer (Trans. AMs, 1958), Molcanov-Ostrovskii (Theory Probab. Appl., 1969),
Caffarelli-Silvestre (Comm. in Part. Diff. Eq., 2007))
Take $0<s<\sigma<1$ and $u \in C^{\sigma}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n},(1+|x|)^{n+2 s} d x\right)$.
For $X=(x, t) \in \mathbb{R}_{+}^{n+1}$, let

$$
\bar{u}(X)=\int_{\mathbb{R}^{n}} P(X, y) u(y) d y
$$

Then,

$$
\left\{\begin{aligned}
\nabla \cdot\left(t^{1-2 s} \nabla \bar{u}\right) & =0 & & \text { in } \mathbb{R}_{+}^{n+1}, \\
\bar{u} & =u & & \text { on } \partial \mathbb{R}_{+}^{n+1}, \\
-t^{1-2 s} \partial_{t} \bar{u} & =\kappa_{s}(-\Delta)^{s} u & & \text { on } \partial \mathbb{R}_{+}^{n+1},
\end{aligned}\right.
$$

where

$$
P(X, y)=c_{n, s} t^{2 s}|X-y|^{-(n+2 s)}, \quad \kappa_{s}=\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}
$$

In particular, if u solves the fractional Lane-Emden equation, its extension \bar{u} solves

$$
\left\{\begin{aligned}
\nabla \cdot\left(t^{1-2 s} \nabla \bar{u}\right) & =0 & & \text { in } \mathbb{R}_{+}^{n+1} \\
-t^{1-2 s} \partial_{t} \bar{u} & =\kappa_{s}|\bar{u}|^{p-1} \bar{u} & & \text { on } \partial \mathbb{R}_{+}^{n+1}
\end{aligned}\right.
$$

Note that

- the energy estimate is transferred on \bar{u}
- the equation is still scale-invariant, i.e. if \bar{u} is a solution then so is

$$
\bar{u}^{\lambda}(X)=\lambda^{\frac{2 s}{p-1}} \bar{u}(\lambda X)
$$

- and variational: the energy on a ball $B(x, r)$ is given by

$$
E(\bar{u}, r)=\frac{1}{2} \int_{\mathbb{R}_{+}^{n+1} \cap B(x, r)} t^{1-2 s}|\nabla \bar{u}|^{2} d x d t-\frac{\kappa_{s}}{p+1} \int_{\partial \mathbb{R}_{+}^{n+1} \cap B(x, r)}|\bar{u}|^{p+1} d x
$$

Compute now the energy of the rescaled solution:

$$
E\left(\bar{u}^{\lambda}, 1\right)=\lambda^{2 s \frac{\rho+1}{\rho-1}-n} E(\bar{u}, \lambda)=: E_{1}(\bar{u}, \lambda)
$$

Then

$$
E_{1}\left(\bar{u}^{\lambda}, 1\right)=E_{1}(\bar{u}, \lambda) .
$$

Step 3: the monotonicity formula

Theorem (Dávila-D-Wei)
For $\lambda>0$, let

$$
E(\bar{u} ; \lambda)=E_{1}(\bar{u} ; \lambda)+\lambda^{\frac{4 s}{\rho-1}-n} \frac{s}{p+1} \int_{\partial B_{\lambda} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} \bar{u}^{2} d \sigma .
$$

Then, E is a nondecreasing function of λ. Furthermore,

$$
\frac{d E}{d \lambda}=\lambda^{-n+2+\frac{4 s}{\rho-1}} \int_{\partial B(x, \lambda) \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s}\left(\frac{\partial \bar{u}}{\partial r}+\frac{2 s}{p-1} \frac{\bar{u}}{r}\right)^{2} d \sigma
$$

Proof of the monotonicity formula
 Recall that if

$$
U(X ; \lambda)=\bar{u}^{\lambda}(X)=\lambda^{\frac{2 s}{p-1}} \bar{u}(\lambda X)
$$

then,

- U solves the equation,

$$
\begin{aligned}
E_{1}(\bar{u} ; \lambda) & =E_{1}(U ; 1) \\
& =\frac{1}{2} \int_{\mathbb{R}_{+}^{n+1} \cap B_{1}} t^{1-2 s}|\nabla U|^{2} d x d t-\frac{\kappa s}{p+1} \int_{\partial \mathbb{R}_{+}^{n+1} \cap B_{1}}|U|^{p+1} d x,
\end{aligned}
$$

- and, using subscripts to denote partial derivatives,

$$
\lambda U_{\lambda}=\frac{2 s}{p-1} U+r U_{r}
$$

So,

$$
\begin{aligned}
\frac{d E_{1}}{d \lambda}(\bar{u} ; \lambda) & =\int_{\mathbb{R}_{+}^{n+1} \cap B_{1}} t^{1-2 s} \nabla U \cdot \nabla U_{\lambda} d x d t-\kappa s \int_{\partial \mathbb{R}_{+}^{n+1}}|U|^{p-1} U U_{\lambda} d x \\
& =\int_{\partial B_{1} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U_{r} U_{\lambda} d \sigma \\
& =\lambda \int_{\partial B_{1} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U_{\lambda}^{2} d \sigma-\frac{2 s}{p-1} \int_{\partial B_{1} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U U_{\lambda} d \sigma \\
& =\lambda \int_{\partial B_{1} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U_{\lambda}^{2} d \sigma-\frac{s}{p-1} \frac{d}{d \lambda} \int_{\partial B_{1} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U^{2} d \sigma
\end{aligned}
$$

Step 4: the blow-down limit is homogeneous

Lemma

\bar{u}^{∞} is homogeneous.

Proof:

- We know that (\bar{u}^{λ}) is bounded in the energy space, so it has a weak limit.
- Since $r \mapsto E(\bar{u}, r)$ is increasing, its limit at infinity exists. This limit is finite. Indeed, take $0<r<R<+\infty$. Write $E=E_{1}+E_{2}$, where E_{1} is bounded thanks to the energy estimate and

$$
E_{2}=\lambda^{\frac{4 s}{p-1}-n} \frac{s}{p+1} \int_{\partial B(0, \lambda) \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} \bar{u}^{2} d \sigma
$$

Since E is nondecreasing,

$$
E(\bar{u}, \lambda)=E(U, 1) \leq \int_{1}^{2} E(U, t) d t \leq C+\int_{B_{2} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} U^{2} \leq C
$$

- Fix $R_{2}>R_{1}>0$. Then,

$$
\begin{aligned}
0 & =\lim _{n \rightarrow+\infty} E\left(\bar{u}, \lambda_{n} R_{2}\right)-E\left(\bar{u}, \lambda_{n} R_{1}\right) \\
& =\lim _{n \rightarrow+\infty} E\left(\bar{u}^{\lambda n}, R_{2}\right)-E\left(\bar{u}^{\lambda n}, R_{1}\right) \\
& =\lim _{n \rightarrow+\infty} \int_{R_{1}}^{R_{2}} \frac{d E}{d t}\left(\bar{u}^{\lambda n}, t\right) d t \\
& \geq \liminf _{n \rightarrow+\infty} \int_{\left(B_{R_{2}} \backslash B_{R_{1}}\right) \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s r_{r}^{2-n+\frac{4 s}{p-1}}\left(\frac{2 s}{p-1} \frac{\bar{u}^{\lambda_{n}}}{r}+\frac{\partial \bar{u}^{\lambda n}}{\partial r}\right)^{2} d x d t} \\
& \geq \int_{\left(B_{R_{2}} \backslash B_{R_{1}}\right) \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s_{r}^{2-n+\frac{4 s}{p-1}}\left(\frac{2 s}{p-1} \frac{\bar{u}^{\infty}}{r}+\frac{\partial \bar{u}^{\infty}}{\partial r}\right)^{2} d x d t}
\end{aligned}
$$

Step 5: Liouville for homogeneous stable solutions

Write

$$
\bar{u}^{\infty}(r, \theta)=r^{-\frac{2 s}{p-1}} \psi(\theta)
$$

Then,

$$
\left\{\begin{aligned}
-\nabla \cdot\left(\theta_{1}^{1-2 s} \nabla \psi\right)+\lambda \theta_{1}^{1-2 s} \psi & =0 & & \text { on } S_{+}^{n} \\
-\theta_{1}^{1-2 s} \partial_{\theta_{1}} \psi & =\kappa_{s}|\psi|^{p-1} \psi & & \text { on } \partial S_{+}^{n}
\end{aligned}\right.
$$

where $\lambda=\frac{2 s}{p-1}\left(n-2 s-\frac{2 s}{p-1}\right)$.
Multiply the equation by ψ

$$
\begin{equation*}
\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \psi|^{2}+\lambda \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \psi^{2}=\kappa \int_{\partial S_{+}^{n}}|\psi|^{p+1} \tag{4}
\end{equation*}
$$

Just proved

$$
\kappa_{s} \int_{\partial S_{+}^{n}}|\psi|^{p+1}=\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \psi|^{2}+\lambda \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \psi^{2}
$$

Stability

$$
\kappa_{s} p \int_{\mathbb{R}^{n}}\left|\bar{u}^{\infty}\right|^{p-1} \varphi^{2} \leq \int_{\mathbb{R}_{+}^{n+1}} t^{1-2 s}|\nabla \varphi|^{2}
$$

+ test functions optimizing the corresponding Hardy inequality
$\varphi=r^{-\frac{n-2 s}{2}} \eta(r) w(\theta)$:
$\kappa_{s} p \int_{\partial S_{+}^{n}}|\psi|^{p-1} w^{2} \leq \int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla w|^{2}+\left(\frac{n-2 s}{2}\right)^{2} \int_{S_{+}^{n}} \theta_{1}^{1-2 s} w^{2}$
Does not suffice to take $w=\psi$ to conclude!

Let ϕ_{α} be the solution of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\theta_{1}^{1-2 s} \nabla \phi_{\alpha}\right)-\left(\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}\right) \theta_{1}^{1-2 s} \phi_{\alpha}=0 \text { on } S_{+}^{n} \tag{5}\\
\phi_{\alpha}=1 \text { on } \partial S_{+}^{n} .
\end{array}\right.
$$

Multiplying by $\varphi^{2} / \phi_{\alpha}$, get
$\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \varphi|^{2}+\left(\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}\right) \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \varphi^{2}=\kappa \lambda(\alpha) \int_{\partial S_{+}^{n}} \varphi^{2}+\int_{S_{+}^{n}} \theta_{1}^{1-2 s} \phi_{\alpha}^{2}\left|\nabla\left(\frac{\varphi}{\phi_{\alpha}}\right)\right|^{2}$ for all φ

A particular case is

$$
\begin{equation*}
\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \varphi|^{2}+\left(\frac{n-2 s}{2}\right)^{2} \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \varphi^{2}=\kappa \Lambda_{n, s} \int_{\partial S_{+}^{n}} \varphi^{2}+\int_{S_{+}^{n}} \theta_{1}^{1-2 s} \phi_{0}^{2}\left|\nabla\left(\frac{\varphi}{\phi_{0}}\right)\right|^{2} \quad \text { for all } \varphi \tag{7}
\end{equation*}
$$

We note that for $\alpha \in\left(0, \frac{n-2 s}{2}\right)$

$$
\begin{equation*}
\phi_{0} \leq \phi_{\alpha} \text { on } S_{+}^{n} \tag{8}
\end{equation*}
$$

Indeed, on S_{+}^{n}

$$
\operatorname{div}\left(\theta_{1}^{1-2 s} \nabla \phi_{0}\right)=\left(\frac{n-2 s}{2}\right)^{2} \theta_{1}^{1-2 s} \phi_{0} \geq\left(\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}\right) \theta_{1}^{1-2 s} \phi_{0}
$$

so ϕ_{0} is a sub-solution of (5). Then we can conclude by the maximum principle.

From now on we fix $\alpha \in\left(0, \frac{n-2 s}{2}\right)$ given by

$$
\alpha=\frac{n-2 s}{2}-\frac{2 s}{p-1}
$$

so that

$$
\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}=\frac{2 s}{p-1}\left(n-2 s-\frac{2 s}{p-1}\right)=\lambda
$$

Use the stability inequality with $\varphi=\frac{\psi \phi_{0}}{\phi_{\alpha}}$:

$$
\kappa p \int_{\partial S_{+}^{n}} \psi^{p+1} \leq \int_{S_{+}^{n}} \theta_{1}^{1-2 s}\left|\nabla\left(\frac{\psi \phi_{0}}{\phi_{\alpha}}\right)\right|^{2}+\left(\frac{n-2 s}{2}\right)^{2} \int_{S_{+}^{n}} \theta_{1}^{1-2 s}\left(\frac{\psi \phi_{0}}{\phi_{\alpha}}\right)^{2}
$$

Combining with (7) (used with $\varphi=\frac{\psi \phi_{0}}{\phi_{\alpha}}$):

$$
\kappa p \int_{\partial S_{+}^{n}} \psi^{p+1} \leq \kappa \Lambda_{n, s} \int_{\partial S_{+}^{n}} \psi^{2}+\int_{S_{+}^{n}} \theta_{1}^{1-2 s} \phi_{0}^{2}\left|\nabla\left(\frac{\psi}{\phi_{\alpha}}\right)\right|^{2} .
$$

Since $\phi_{0} \leq \phi_{\alpha}$,

$$
\kappa p \int_{\partial S_{+}^{n}} \psi^{p+1} \leq \kappa \Lambda_{n, s} \int_{\partial S_{+}^{n}} \psi^{2}+\int_{S_{+}^{n}} \theta_{1}^{1-2 s} \phi_{\alpha}^{2}\left|\nabla\left(\frac{\psi}{\phi_{\alpha}}\right)\right|^{2} .
$$

and using (6)
$\kappa p \int_{\partial S_{+}^{n}} \psi^{p+1} \leq \kappa \Lambda_{n, s} \int_{\partial S_{+}^{n}} \psi^{2}+\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \psi|^{2}+\left(\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}\right) \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \psi^{2}-\kappa \lambda(\alpha) \int_{\partial S_{+}^{n}} \psi^{2}$
Recall the energy identity

$$
\int_{S_{+}^{n}} \theta_{1}^{1-2 s}|\nabla \psi|^{2}+\left(\left(\frac{n-2 s}{2}\right)^{2}-\alpha^{2}\right) \int_{S_{+}^{n}} \theta_{1}^{1-2 s} \psi^{2}=\kappa \int_{\partial S_{+}^{n}} \psi^{p+1}
$$

so that

$$
\kappa(p-1) \int_{\partial S_{+}^{n}} \psi^{p+1} \leq \kappa\left(\Lambda_{n, s}-\lambda(\alpha)\right) \int_{\partial S_{+}^{n}} \psi^{2}
$$

Step 6: The solution itself is trivial

We have (almost) proved that, as $\lambda \rightarrow+\infty$,

$$
E(\bar{u}, \lambda)=E\left(\bar{u}^{\lambda}, 1\right) \rightarrow E\left(\bar{u}^{\infty}, 1\right)=0
$$

Now, as $\lambda \rightarrow 0$,

$$
\begin{aligned}
& E(\lambda ; 0, \bar{u})=\lambda^{2 s \frac{p+1}{p-1}-n} \cdot\left(\frac{1}{2} \int_{\mathbb{R}_{+}^{n+1} \cap B_{\lambda}} t^{1-2 s}|\nabla \bar{u}|^{2} d x d t\right. \\
&-\left.\frac{\kappa_{s}}{p+1} \int_{\partial \mathbb{R}_{+}^{n+1} \cap B_{\lambda}}|\bar{u}|^{p+1} d x\right) \\
& \quad+\lambda^{\frac{4 s}{p-1}-n} \frac{s}{p+1} \int_{\partial B_{\lambda} \cap \mathbb{R}_{+}^{n+1}} t^{1-2 s} \bar{u}^{2} d \sigma \rightarrow 0
\end{aligned}
$$

So, \bar{u} itself has constant zero energy and so it must be homogeneous.

