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Universal estimates and Liouville-type theorems



Local regularity theory for semilinear elliptic equations
Consider the Lane-Emden equation

—Au=|ufP~'u inR" (1)
and more generally any semilinear elliptic equation of the form
—Lu=f(x,u,Vu) inQ (@)

where Q is any open set of euclidean space and
» L scales like a laplacian i.e.
Lu = aj(x)0jju + bi(x)oiu + c(x)u
is a uniformly elliptic operator of order 2 with smooth coefficients
and ellipticity constants A, A.
» f scales algebraically at infinity i.e. forall x € Q,t >0, £ € R",

0 < f(x,1,€) < C(1 + tP + |¢|PT)
and forall x € Q,

. fly,tt%¢)
tﬁ+o<lsl,r;]€§2%x tP o K(X) < (O’ Jroo)’

locally uniformly in &.



Theorem (Polacik-Quittner-Souplet, Duke, 2007)
The following assertions are equivalent
1. The Lane-Emden equation (1) has no positive solution

2. There exists constants C; = Cj(\,\, b, c,n, f) > 0 such that
for all positive solutions of (2)

u(x) < Cy + Cadist(x, 9Q) 51
Furthermore, if f(u) = uP, Cy; = 0.

2 = 1 is easy. The reverse implication uses a rescaling
procedure [Gidas-Spruck, Comm. PDE, 1981] and a doubling
lemma [Gromov, Geom. Funct. Anal, 1991]



Critical exponents

We say that p lies below the critical Sobolev exponent if
p < ps(n), where

4+oo ifn<2
n) =
ps(n) n+2 in>3
n-—2

and p lies below the Joseph-Lundgren exponent if p < p¢(n),
where
+oo ifn<10

pe(n) =19 (n—22 —4n+8V/n—1 .
(n—2)n—10) "=




Critical exponents

The Lane-Emden equation (1) is scale-invariant: if u is a solution,
then so is ,
U (x) = AT u(\x).

Further, it is variational, with energy functional given by

1

1
Eo(u;B)= [ { |Vul? — ——|ulP™ } adx
o(wi ) = [ {5Ivult ~ ol

» The Sobolev exponent is the unique exponent such that
Eo(u; By) = Eo(u*; By)

» It is natural to consider solutions preserving the scale invariance
i.e. homogeneous solutions.



In particular, there exists a singular solution of the form
2
us(x) = Alx| 7.
Definition

A solution to the Lane-Emden equation is said to be stable if
the second variation of the energy is nonnegative i.e.

/ plulP~1p? dx < / IVe[2 dx  forall o € CL(R").
R RN

It has finite Morse index if the above inequality fails at most on
a (punctured) finite dimensional subspace.

Hence, us is stable if

2
AP1/ SOarx</ Vol? dx
P mo X2 T R"’ i

which holds, in virtue of Hardy’s inequality if and only if

n—2)>
pAPT < (4) <> p > pc(n).



Liouville theorems

1. If p < ps(n), the Lane-Emden equation has no positive
solution [Gidas-Spruck, Comm. PDE, 1981]

2. If p = ps(n), up to rescaling and translation, the positive
solution is unique, thus radial [Caffarelli-Gidas-Spruck,
CPAM, 1989]

3. If p < pc(n), p # ps(n), there is no nontrivial solution of
finite Morse index [Farina, JMPA, 2007]

4. Conjecture [Wei, 2013] : if pc(n) < p < pe(n—1), up to
rescaling and translation, there is a unique stable solution,
thus radial

Wei's conjecture is motivated by the fact that for p < p.(n— 1), the
nonradial function fg(x) = A|x’|‘T31 is unstable. For

ps(n—1) < p < ps(n—1),Foc’ly many singular sol’s, asymptotic to
ils, unstable as such, see [Dancer-Guo-Wei, Indiana Math J, 2013]



Partial regularity in the supercritical cases

1. If p> ps(n) and u > 0 is a (local) stationary solution, then
u e C?(Q\ X), where ¥ is a closed set such that

cap, ,(¥) = 0.

[Adams, EJDE, 2012]
2. lf p> pe(n)and u € H

loc(£2) has finite Morse index,

Hoim(E) < N — 2P

p—1
withy =2p+2/p(p—1) — 1.

[Davila-D-Farina, JFA 2010]



Other nonlinearities

1. Iff(u) =eY, N=2and fRZ e! < oo, then up to rescaling
and translation, the solution is unique and radial [Chen-Li,
Duke, 1981]

2. If f(u) = €Y, 3 < N <9, no u has finite Morse index
[Dancer-Farina, Proc. Amer. Math. Soc., 2009]

3. Iff>0,1< N <4, every bounded stable solution is
constant [D-Farina, JEMS, 2010].

4. 1f 1 < N < 2, every stable solution with bounded gradient is
1D [Berestycki-Caffarelli-Nirenberg, Ann. Scuola Norm.
Sup. Pisa, 1997]



The Lane-Emden system

1. Biharmonic Lane-Emden and Liouville eq. : [C.S. Lin,
Comment Math. Helv., 1998], [Wei-Xu, Math. Ann., 1999],
[D-Ghergu-Goubet-Warnault, ARMA 2012],
[Davila-D-Wang-Wei, arxiv].

2. Lane-Emden system not yet understood : see [Mitidieri,
CPDE 1993], [de Figueiredo-Felmer, Ann. Sc. Norm.
Super. Pisa 1994], [Serrin-Zou, Atti Semin. Mat. Fis.
Univ.Modena 1998], [Busca-Manasevich, Indiana 2002],
[Polacik-Quittner-Souplet, Duke 2007], [Souplet, Adv Math
2009], [Chen-D-Ghergu, DCDS-A 2013], [Cowan, arxiv].



The fractional Lane-Emden equation



For s € (0,1) and p > 1, consider the equation
(-A)Su=|uP'u  inR",

where
ue C?*?(RMNLY(R" (14 |x])™2Sdx),0 < s <o <1

(—A)su(x) = c,,,SPV/n W dy.



Warning 1: many nonlinear diffusion operators

There are many nonlocal diffusion operators and the fractional
Lane-Emden equation is not universal, as in the local case.
For example, take a Lévy symbol of the form

v = [ 16 wPou(d).

where 1 is a positive measure on S"1.
» The fractional Laplacian corresponds to the choice of the
uniform measure
» The process (X{, ..., X"), where X/ are independent
copies of a (linear) symetric a-stable process (a = 25)
corresponds to the choice 1 = >_7_, Jg,. It is generated by

— u(x + hej)
Z/ ’h|1+2$ dh.




Warning 2: (linear) boundary regularity is delicate
Theorem (Ros-Oton and Serra, JMPA 2013)

There exists o € (0, 1) such that for ) € L°°(Q), have
H‘P/‘;s‘lca(ﬁ) < C”TIJHLOO(Q)V

where
(—AYp =7 inQ,
p=0 inR"\ Q.

Cn.s (=A)°u=0 inB,
us(x) = ——————  solves o
(1 - x2)® { u=0 inR"\B.
Theorem (Abatangelo, arxiv 2013)
The problem
(=2)°u=f inQ,
u=g inR"\ Q.

1

5" "Su=nh ondQ.

is uniquely solvable. Given o solving (3) for some ¢ € CZ°(R), Green’s indentity is

fuemre= [eemu- [ u-aros [ aoe ().



Basic properties of the fractional Lane-Emden eq.

The equation
(-A)u=uP'lu inR"
» is scale invariant: if u is a solution, then so is
uy(x) = )\P%u()\x), x e RN A >0,

» is variational with energy functional given by

1 . s/2 Z_L p+1
RS T



Critical exponents

We say that p lies below the critical Sobolev exponent if
p < ps(n), where

+oo ifn<2s
ps(n) =19 n+2s

ifn>2
s if n>2s

and p lies below the Joseph-Lundgren exponent if
) ( T) - r( n+25)2
2 -5 15?2

For p supercritical, the above condition fails if and only if the
singular solution

iz -
r(

“\

p

o]
—|
~—
1]
~—
n

p—

2s
us(x) = Alx| »-T is stable .



Known Liouville theorems

1. If p < ps(n), the Lane-Emden equation has no positive
solution [Chen-Li-Ou, CPAM 2006 and Y.Y. Li, JEMS 2004]

2. If p = ps(n), up to rescaling and translation, the positive
solution is unique, thus radial [Chen-Li-Ou, CPAM 2006
and Y.Y. Li, JEMS 2004]



Our Liouville theorem

Theorem ([Davila-D-Wei])
Let u be a solution with finite Morse index.

» If p lies below the Joseph-Lundgren exponent, p # ps(n),
thenu = 0;

» If p = ps(n), then u has finite energy i.e.

(—2)52uf? dx = / ulPH dx < 400,
R7 R7

If in addition u is stable, then in fact u = 0.



The proof



[Bernstein, Comm. Soc. Math. de Kharkov, 1915]

Theorem
Let N < 7. Assume u € C?(RN;R) is a solution of the minimal
surface equation in RN. Then, the graph of u is a hyperplane.

Remark

The original proof of Bernstein, in dimension N = 2, contained
a gap, discovered and fixed by [Hopf, Proc. Amer. Math. Soc.,
1950]. The case N = 3 is due to [De Giorgi, Ann. Scuola Norm.
Sup. Pisa, 1965], N = 4 to [Almgren, Ann. of Math., 1966],

N < 7 to [Simon, Ann. of Math.,1968]. A counter-example was
found by [Bombieri-De Giorgi-Giusti, Invent. Math., 1969] for

N > 8. An important step in the proofs is the following result
due to Fleming:

Theorem ([Fleming, Rend. Circ. Mat. Palermo, 1962])

If there exists a nonplanar entire minimal graph, then there
exists a singular area-minimizing hypercone.



sketch of the proof of our theorem

» | will discuss only the case where p supercritical and u is stable,
i.e. forall p € C3°(R"),

p—1,2 2
p [ 1Pe? d < Il

» Estimate solutions in the LP*' N HS norm (Cacciopoli or energy
method)

» Localize the problem by extension in the half-space R7.
» Derive a monotonicity formula E = E(r).
» Consider the blow-down (weak) limit

7 (x) = lim AT a(Ax)

A—00

> U™ satisfies E(r) = const. Hence, U™ is a homogeneous stable
solution

» Prove that such solutions are trivial if p is below p¢(n), by
analyzing the equation on the half-sphere of R,

» Using the monotonicity formula again, prove that in fact u is
trivial.



Step 1: energy estimate

Lemma
Form > n/2 and x € R", let

(n(x) = n(y))?

n(x) = (1+|x)=m/2 and p(x) = y|n+es ay

RN ‘X—

Then, there exists a constant C = C(n, s, m) > 0 such that

o) <C(1+1x) 2

Lemma o
Let u be a stable solution i.e. for all ¢,

1 2
p [ P62 ok < gl
]:Rn

Assume thatm € (5,5 + 5(p+1)). Taken as above. Then, there exists a constant
C = C(n,p, s, m) > 0 such that

1.2
/ Py dX+*|IUnHHS < C.



(=A)u= Py xun
Then,

/ [ulP*1n? dx :/n(fA)suunz ax
RN R

= [ (8072 (=0)2(un?) ox

®’N
(Ux) = b EEN? — uynw?)

= y

®rN JRN ‘X,y‘n+23

-1 OO = uRUPX) +rPW) + W)

= Jrn Jrn |x — y|n+2s

_ (UCOn(x) = u)n))? = (1x) = nY)ux)uly)

~ Jrn Jrn |x — y|nt2s Y

(10) = n)uxu)
R B e

Using the inequality 2ab < & + b2, we deduce that

2 p+1, 2 2

lunliZsquny = [ 1P ax < [ uPp ox

HS(RM) ) ®N

Since u is stable, we deduce that
(-1 /n [Pt 2 dx < / P dx
JR

Going back, it follows that

1 ) . > .
p+1, 2 2

—|lunl|% u ax < —— u dx

S nHHS(Rn)+/Rn| Py o )



Now,
2 2 A 4
Upd)(: ucpn p+1 77.0+1 ax
Rn Rn

2 p—
1 +1 4 1
< (/ |u[Pt1y? dx> . (/ p5—1 n P dx> g
Rn n

By technical lemma,
/ oty P‘dx<C/ 14+ [x%) “(BH) 5542 gy,

The integral is finite since m <  + 5(p + 1) and the lemma
follows easily.



Step 2: localizing the problem
TheO rem (Spitzer (Trans. AMS, 1958), Molcanov-Ostrovskii (Theory Probab. Appl., 1969),

Caffarelli-Silvestre (Comm. in Part. Diff. Eq., 2007))

Take0 < s <o <1anduc Co°(R") N LY (R", (1 + |x|)"2Sdx).

;
For X = (x,t) e RT", let

u(Xx) = - P(X,y)u(y) dy.
Then,
V- (1'725VD) =0 in R,
U=u on OR™H,
—t17250,0 = wg(—A)°u  on IR,
where

r1—s)

— 2 —(n+2 —
P(X.y) = onst*IX =y "2, ks = s



In particular, if u solves the fractional Lane-Emden equation, its
extension u solves

V- (1'725Vi) =0 in R
{ —t'7250,0 = Kks|U[P'T on OGR!
Note that
» the energy estimate is transferred on u
» the equation is still scale-invariant, i.e. if U is a solution then so is

T (X) = AT O(AX).

» and variational: the energy on a ball B(x, r) is given by
_ 1
E(G,r)= t'=25|v |2 dxdt—

7|p+1
2 n+1 p+ 1 n1 |U| ax
R NB(x,r) ORI NB(x,r)

Compute now the energy of the rescaled solution:

E(T*,1) = A2 "E(T, \) =: E;(T, \)

Then
Ey(0*,1) = E4(T, )).



Step 3: the monotonicity formula

Theorem (Davila-D-Wei)
For X >0, let

E(u; \)

Il
n
—
s
>
—
+
>

he]

1]

|
=]

/ t'=257?  do.
P+ 1 Jog,nrn+

Then, E is a nondecreasing function of \. Furthermore,

- =\ 2
ﬁ _ )\—n+2+1% 1-2s <8U + 2s U) do
ax OB(x \)NRT or p-—1r




Proof of the monotonicity formula

Recall that if ,
S
U(X; A) = TMN(X) = AT T(AX)
then,
> U solves the equation,
>
Ei(U;A) = E1(U; 1)
1
_ 11257 UPdxdt — ﬁ/ P ax,
2 Jr1nB, p+1 JormnB,

» and, using subscripts to denote partial derivatives,

2
AUy = —=>_ U+ 1l
p—1

So,

dEq 1-2s —1

L g = 125U . VU, dx dt — ms/ \UP="UU, dx
RTHNB; oRMH

dx
= t'=35U,U, do
8By "R

2s

= 12502 do — / t'=25UU, do
8B NRH p—1 Jop gt

s d 12512 dor

p—1dX Jop AR+

=) 12502 do —
9B, MR



Step 4: the blow-down limit is homogeneous

Lemma
U is homogeneous.

Proof:
P> We know that (a >‘) is bounded in the energy space, so it has a weak limit.

Since r — E(U, r) is increasing, its limit at infinity exists. This limit is finite. Indeed, take
0 < r < R < +oo. Write E = Eq + Ep, where E; is bounded thanks to the energy estimate and

>

4s _, s

Ep=ap-1 "~ 172532 do
p+1 os(o,x)mmf‘
Since E is nondecreasing,
E(@, \) = E(U, 1) </ EUt)dt<C+/ 122 < ¢
BynrMH!
2
P> Fix Ry > Ry > 0. Then,

0 = lm_E@ i) — E(@ ARy

: =An _ E(nAn
= im_E@M, Ry — E@, Ay)

Ry dE

= lim (‘k" 1) dt
n—+oo Ff1
_ - 2
2 ni4s_ 2s o™ autn
> liminf f1—2s 27" p=3 4 dx dt
n=+o0 J(Bp, \Bp, )R p—1 r or
>

_ps2-ne s, (25 T 90 )\?
=282 =1 (——+ dx dt

'/(BHZ\BR1 )nRTH p—=1r or



Step 5: Liouville for homogeneous stable solutions

Write 2
u>(r,0) = r-e=11)(6).
Then,
—V - (0]72°Vy) + M %y =0 on ST,
—01 2%, ¢ = rs|¢|P~ 'Y on 8S]
where \ = ;;2%1 (n—23— l%)

Multiply the equation by

[oorzweean [ozon [ wen @
s s asn



Just proved

fis/ W’|p+1 :/
28] S

Stability

n 012572 + )\/Sn 61252
+

+

Ksp/ |D<>o|P—1902 S/ 1t1_2S\Vg0]2
R" R

+ test functions optimizing the corresponding Hardy inequality
n—2s
e=r"2 n(rjw(0):

2
wp [ lwetwe < [ owwiz e (T2) [ orew?
os" s 2 s

n
+

Does not suffice to take w = v to conclude!



Let ¢ be the solution of

div(0] "%V ga) — ((

$a =1 on 881.

Multiplying by 2/, get

1-2 2 n—-2s, 2 1-2s 2 2 1-2s 2 »
[, ool + (2R - 0?) [ e — @) [P [ el
Jsh 2 sn ash st ¢

a

)\2 for all ¢
(6)
A particular case is

n—2s - _ ' ' - b
P o =kt [P [ 0BV ()R torale (1)
2 sn as? s $o

1-2 2
Jop IV 4
7

n—23)

We note that for o € (0,

$o < b oONSY. ®
Indeed, on ST

n—2s
2

n—2s
div(0] "2V 60) = (——)%0] "0 > ((

) = a®)8; %60

SO ¢ is a sub-solution of (5). Then we can conclude by the maximum principle.



From now on we fix « € (0, "’225) given by

so that

n—2s 2s 2s
)27042 n s
2 p—1 p—1

Use the stability inequality with ¢ = 1/%;0:

pr1 pl—2s o ¥P0y2 N 25 g1—2s P02
’””"/asz“’ ’/SQ‘ ER)P+ (B2 [ o)

b 2 n ¢

Combining with (7) (used with ¢ — 1%0);

wp [Pt < 'i/\n,s/a

2 1-2s ,2 b2
n 0 vV(—)|c.
Josh ¥ -/SQ 1l (¢a )

n
St

Since ¢g < ¢q,
_ P
wp [ 0P S nhns [ 0P [ 61TV,
ash ash st Pa

and using (6)
p+1 2 1-2s 2 n—-2s, 5 1-2s 2
Kp P < khn,s P+ 0, V= + ((——)" — ) 0, T
ast asfh s 2 sh

Recall the energy identity
_ n—2s —
/ 0172572 + (( - az)/ pl=25y2 — K/ WPH
st 2 s a8}

so that

s =) [ 0P < s =A@ [ 0*.
+

n
st

) /9 0"



Step 6: The solution itself is trivial
We have (almost) proved that, as A — +o0,
E(T,\) = E(G*,1) — E(T>,1) =0
Now, as A — 0,

E(0,0) = 2550 (1 / £1-25)V 2 dxalt
2 R1+1QB>\

K _
e |aPH dx
p + 1 8R1+1QB>\

poapTn_S 12502 do —5 0
p+1 Jog,nrnt

So, u itself has constant zero energy and so it must be
homogeneous.



