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This talk is concerned with two well-studied nonlinear equations

••
(P ) ∆u− V (x)u + up = 0, u > 0 in RN ,

u ∈ H1(RN ), p <
N + 2
N − 2

AIM: existence of infinitely many positive, bound states, assuming
no symmetry of V .

••
(II) ∆u + |u| 4

N−2 u = 0 in RN

u ∈ D1,2(RN )

AIM: establish the non-degeneracy of sign-changing solutions.
In both problems, the role of Circulant Matrices and Intermediate
Liapunov-Schmidt Reduction Method will be emphasized.



This talk is concerned with two well-studied nonlinear equations

••
(P ) ∆u− V (x)u + up = 0, u > 0 in RN ,

u ∈ H1(RN ), p <
N + 2
N − 2

AIM: existence of infinitely many positive, bound states, assuming
no symmetry of V .

••
(II) ∆u + |u| 4

N−2 u = 0 in RN

u ∈ D1,2(RN )

AIM: establish the non-degeneracy of sign-changing solutions.
In both problems, the role of Circulant Matrices and Intermediate
Liapunov-Schmidt Reduction Method will be emphasized.



This talk is concerned with two well-studied nonlinear equations

••
(P ) ∆u− V (x)u + up = 0, u > 0 in RN ,

u ∈ H1(RN ), p <
N + 2
N − 2

AIM: existence of infinitely many positive, bound states, assuming
no symmetry of V .

••
(II) ∆u + |u| 4

N−2 u = 0 in RN

u ∈ D1,2(RN )

AIM: establish the non-degeneracy of sign-changing solutions.
In both problems, the role of Circulant Matrices and Intermediate
Liapunov-Schmidt Reduction Method will be emphasized.



Circulant Matrices

The circulant matrix B = circ{b} associated to the vector
b = (b1, b2, . . . , bK) ∈ CK is the K ×K matrix:

B =




b1 b2 · · · bK−1 bK

bK b1 · · · bK−2 bK−1
...

...
. . .

...
...

b3 b4 · · · b1 b2

b2 b3 · · · bK b1




.

Denote

B = circ{b1, b2, ..., bK}



Key Property of Circulant Matrices

An important property of circulant matrices is that all circulant
matrices have the same ordered set of orthonormal eigenvectors
{Xl} and diagonalizable matrix PK .

Let q = ei 2π
K be a primitive K-th root of unity, we define

Xl =
1√
K

(1, ql−1, q2(l−1), . . . , q(K−1)(l−1))T ∈ CK , for l = 1, . . . , K,

and

PK =
1√
K




1 1 · · · 1 1
1 q · · · qK−2 qK−1

...
...

. . .
...

...

1 qK−2 · · · q(K−2)2 q(K−2)(K−1)

1 qK−1 · · · q(K−1)(K−2) q(K−1)2






For the circulant matrix B = circ{b}, let

λl = b1 + b2q
l−1 + · · ·+ bKq(K−1)(l−1), for l = 1, . . . ,K. (1)

BXl = λlXl, l = 1, . . . , K

All circulant matrices have the same ordered set of orthonormal
eigenvectors {Xl} and diagonalizable matrix PK . The eigenvalues
of circulant matrix B = circ{b} are given by

λl = b1 + b2q
l−1 + · · ·+ bKq(K−1)(l−1), for l = 1, . . . , K.



Intermediate Liapunov-Schmidt Reduction Method

Gluing Methods:

I Finite dimensional Liapunov-Schmidt reduction method
Floer-Weinstein 1986
Many many variations and refinements
.....

I Infinite dimensional Liapunov-Schmidt reduction method
del Pino, Kowalczyk, Pacard, Wei 2007, 2010
del Pino-Kowalczyk-Wei: counterexample to De Giorgi’s
Conjecture in dimensions N ≥ 9

I Intermediate Liapunov-Schmidt reduction method
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I. Nonlinear Schrödinger Equation with Subcritical
Exponent

Consider the following nonlinear Schrodinger equation

(P ) ∆u− V (x)u + up = 0, u > 0, lim
|x|→+∞

u(x) = 0,

where

0 < a ≤ V (x) ≤ b

.

lim
|x|→+∞

V (x) = V∞(:= 1) > 0



Solutions of (P) can be seen as stationary states in nonlinear
equations of Klein-Gordon type

∂2ϕ

∂t2
−∆ϕ + (V + ω2)ϕ− |ϕ|p−1ϕ = 0

or Schrödinger type

i
∂ϕ

∂t
−∆ϕ + (V + ω2)ϕ− |ϕ|p−1ϕ = 0

A solitary wave of standing wave form can be searched as solution
of the form

ϕ = eiωtu(x)



Constant Coefficient Case:V (x) ≡ 1

∆u− u + up = 0, u > 0 in RN u ∈ H1(RN )

Radial symmetry
•• Gidas-Ni-Nirenberg 1981: u radially symmetric around some
point and strictly decreasing.
This reduces the problem to ODE.

Existence
•• Strauss 1977; general f(u) case Berestycki-Lions 1983

Uniqueness
•• Kwong 1989



General nonconstant V (x) Case

(P ) ∆u− V (x)u + up = 0, u > 0, u ∈ H1

Main Problem: the map from H1(RN ) to Lq(RN ) is no longer
compact due to the translation invariance of RN , whatever q is.
”Concentration-compactness”

Existence: different topological situations according to

1) V (x) → V∞ from below

V = V∞ − a

|x|m as |x| → +∞

2) V (x) → V∞ from above

V = V∞ +
a

|x|m as |x| → +∞



When 1) is true (P) can be handled by concentration-compactness
type arguments.
P.L. Lions 1984: Existence of a positive least energy solution to (P)

(P ) ∆u− V (x)u + up = 0, u > 0, u ∈ H1(RN )

when V approaches V∞ from below:

V (x)− V∞ ∈ L
N
2 (RN ), V (x) ≤ V∞ from below

The following minimization Problem is attained:

(∗) cV = inf{
∫

RN

(|∇u|2 + V (x)u2) |
∫

RN

up+1 = 1}

cV < cV∞



When V (x) → V∞ from above the minimization problem (*) may
not have solution:

(∗) cV = inf{
∫

RN

(|∇u|2 + V (x)u2) |
∫

RN

up+1 = 1}

In fact, if V (x) ≥ V∞ and V 6≡ V∞ in a positive measure, then

(∗) cV = inf{
∫

RN

(|∇u|2 + V (x)u2) |
∫

RN

up+1 = 1} = cV∞

and hence cV is not achieved.

So least energy solution (or ground state) does not exist. One has
to look for higher energy level solutions (bound states).
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Existence of a positive, not ground state, solution to (P) has been
proved by Bahri - P.L. Lions 1997

under a fast decay condition:

V (x)− V∞ ≥ Ce−σ|x||x|−N−1
2

Ingredients of the proof (59 pages):

•• Deep study of the compactness question;
•• Variational and topological arguments.

So even existence of one positive solution is already difficult.
How about the existence of infinitely many positive solutions ???
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Multiplicity of positive solutions

(Pε) ε2∆u− V (x)u + up = 0, u > 0, u ∈ H1(RN )

∆u− V (εx)u + up = 0, u > 0, u ∈ H1(RN )

Number of solutions related, as ε is small, to the number and/or
the type of critical points of a(x), or to the topology of sublevel
sets of a(x).
•• finite dimensional Lyapunov - Schmidt reduction
Floer-Weinstein 1986
[Ambrosetti - Badiale - Cingolani, Byeon, Cao, Dancer, Del Pino,
Felmer, Floer - Weinstein, Kang, Noussair , Oh , Gui, Tanaka,
Wei, Yan, Lin, Liu, Malchiodi, Pistoia, Grossi, DAprile, Musso, ... ]



Typical Result

Kang-Wei 2000: If V (x) has a local maximum point, then for any
integer K ≥ 1 there exists εK > 0 such that for ε < εK there are
solutions with K bumps

In this case the number of positive solution approaches to +∞ if
ε → 0.

However this does not answer our question:
Existence of infinitely many positive bound states for a fixed ε???
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Seminar work of Coti Zelati -Rabinowitz

Coti Zelati - Rabinowiz 1992 developed variational gluing method:
Infinitely many multi-bump positive solutions when

V (x) is periodic

Non-periodic V (x)??

As far as we know, the first result on the existence of infinitely
many positive bound states was due to Wei-Yan in the case of
V = V (r)
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Radial V

We assume that V (x) is radial. That is, V (x) = V (|x|). Thus, we
consider the following problem

(P ) ∆u− V (|x|)u + up = 0, u > 0 in RN , u ∈ H1(RN ),

where 1 < p < N+2
N−2 .

We assume that V (r) > 0 satisfies the following condition:
(V): There is are constants a > 0, m > 1, θ > 0, and V∞ > 0,
such that

V (r) = V∞ +
a

rm
+ O

( 1
rm+θ

)
, (2)

as r → +∞.



Results in the radial symmetry case

Theorem 1. (Wei-Yan 2008) If V (x) = V (r) satisfies

V (r) = V0 +
a

rm
+ O

( 1
rm+θ

)
,

then problem (P)

(P ) ∆u− V (|x|)u + up = 0, u > 0 in RN , u ∈ H1(RN )

has infinitely many non-radial positive solutions, whose energy can
be made arbitrarily large. Namely for any M > 0, there exists a
positive solution to (P) with

I[u] =
1
2

∫

RN

(|∇u|2 + V u2)− 1
p + 1

∫

RN

up+1 > M

A new proof by variational methods:
Devillanova - Solimini 2012
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Conjecture: Nonsymmetric Case

A natural question is whether or not the result remains true when
the symmetry requirement is lifted:

Conjecture: Problem (P) has infinitely many positive solutions if
there are constants V∞ > 0, a > 0, m > 1, and σ > 0, such that
the potential V (x) satisfies

V (x) = V∞ +
a

|x|m + O
( 1
|x|m+σ

)
, as |x| → +∞. (3)



Non-symmetric Case: A Perturbative Result

Results in this direction with non-symmetric potentials, as far as
we know, there are only perturbative results.
Cerami, Passaseo and Solimini 2012, CPAM 2013: Assume that

I V (x) ≥ V∞ > 0,

I lim|x|→∞
(
V (x)− V∞

)
eη̄|x| = +∞, for some η̄ ∈ (0,

√
V∞)

I supx∈RN ‖V (x)− V∞‖LN/2(B1(x)) < δ,

then there exists δ0 > 0 (with no explicit expression) such that for
δ < δ0 problem (P) has infinitely many positive solutions by purely
variational methods.

Ao-Wei 2013: gave a new proof of this result with general f(u),
using finite dimensional Liapunov-Schmidt reduction method
Open: General V (x) without any smallness assumption
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General V (x) Case

Theorem 2. (del Pino-Wei-Yao 2013) Let N = 2. Suppose that
V (x) satisfies

V (x) = V∞ +
a

rm
+ O

( 1
rm+θ

)
,

and

min
{
1,

p− 1
2

}
m > 2, σ > 2. (4)

Then problem (P) has infinitely many non-radial positive solutions,
whose energy can be made arbitrarily large.



1. If expansion for V holds in the C1 sense, then “σ > 2” in (4)
can be improved to be “σ > 0”. The condition on p can be further
relaxed if we assume more regularity of the condition or if p is an
integer.

2. More regularity of V =⇒ less restrictions on p.

3. We believe same result holds for N ≥ 3. Partial progress.

4. Theorem 2 is proved by intermediate Liapunov-Schmidt
reduction method



An introduction to finite dimensional Liapunov-Schmidt
reduction method

Let X, Y be Banach spaces and S(u) is a C1 map from X to Y .
To study the equation

S(u) = 0

a natural way is to find approximations first and then to look for
genuine solutions as (small) perturbations of approximations.
Assume that Uλ are the approximations such that

S(Uλ) ∼ 0

Here λ ∈ Λ is the parameter (we think of Λ as the configuration
space). Writing u = Uλ + ϕ, then solving S(u) = 0 amounts to
solve

L[ϕ] + E + N(ϕ) = 0, (5)

where
L[ϕ] = S′(Uλ)[ϕ], E = S(Uλ)

N(ϕ) = S(Uλ + ϕ)− S(Uλ)− S′(Uλ)[ϕ].



In order to solve (5), we try to invert the linear operator L so that
we can rephrase the problem as a fixed point problem. That is,
when L has a uniformly bounded inverse in a suitable space, one
can rewrite the equation (5) as

ϕ = −L−1[E + N(ϕ)] = A(ϕ).

What is left is to use fixed point theorems such as contraction
mapping theorem.

The Lyapunov-Schmidt reduction deals with the situation when the
linear operator L is Fredholm and its eigenfunction space
associated to small eigenvalues is finite dimensional.
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Assuming that {z1, . . . , zn} is a basis of the eigenfunction space
associated to small eigenvalues of L, we can divide the procedure
of solving (5) into two steps:

(i) solving the projected problem for any λ ∈ Λ,





L[ϕ] + E + N(ϕ) =
n∑

j=1
cjzj ,

〈ϕ, zj〉 = 0, ∀ j = 1, . . . , n,

where cj may be constant or function depending on the form
of 〈ϕ, zj〉.

(ii) solving the reduced problem

cj(λ) = 0, ∀ j = 1, . . . , n,

by adjusting λ.



In the case of V = V (x) and the equation (P)

S(u) = ∆u− V (x)u + up = 0

with

V (x) = 1− a

|x|m as |x| → +∞

Building Block: By the asymptotic behaviour of V at infinity, the
basic building block is the ground state (radial) solution w of the
limit problem at infinity:

{
∆w − w + wp = 0, w > 0 in RN ,

w = w(|x|), w ∈ H1(RN ).
(6)



We choose λ = (Q1, ..., QK) ∈ RNK such that

|Qj | >> 1, min
i6=j

|Qi −Qj | >> 1

Approximate solution

Uλ =
K∑

j=1

w(x−Qj)

Approximate Kernels

Zi,j =
∂w(x−Qj)

∂xi
, i = 1, 2, j = 1, ..., K



(i) solving the projected problem for any λ ∈ Λ,

{
S(U+ϕ) =

∑
i=1,2,j=1,...,K cijZi,j ,∫

ϕZij = 0, i = 1, 2,∀ j = 1, . . . , K,

(ii) solving the reduced problem

cij(λ) = 0, i = 1, 2,∀ j = 1, . . . , K

by adjusting λ = (Q1, ..., QK).

Reduced equation

cij(λ) = 0, i = 1, 2, j = 1, ..., K

There are now 2K number of equations!



Variational Reduction

Key variational reduction: cij(λ) = 0 if and only if
M(Q1, ..., QK) := I[Uλ + ϕλ] has a critical point in the
configuration space.

Even with that, it is not easy to find a critical point for a large
number of points. In particular if the critical point has large
number of positive and negative directions.
However if V (x) = V (|x|) problem (P) is invariant under

•• rotation by 2π
k

•• reflection by (x1, x2) → (−x1, x2)
We can reduce the problem to just adjusting one parameter–the
radius R- representing the location of a single bump along a given
ray.
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Let

Qj =
(
R cos

2(j − 1)π
k

,R sin
2(j − 1)π

k
, 0

)
, j = 1, · · · ,K,

R >> 1

These K spikes are distributed equidistance on the circle
{|x| = R}.
Let

U(Q1,...,QK)(y) =
K∑

j=1

w(x−Qj),



Reduced Energy

The Energy

I[u] =
1
2

∫

RN

|∇u|2 +
1
2

∫

RN

V (r)u2 − 1
p + 1

∫

RN

up+1

Energy of one spike

I[w(x− x1)] = A +
B1

Rm
+ O

( 1
Rm+θ

)
,

For multiple-spikes on a circle, we have

I[U ] = k
(
A +

B1

Rm
−B2e

− 2πR
k + O

( 1
km+σ

))

where B1 > 0, B2 > 0 are positive constant.



Reduced Energy

Easy to see: the function

B1

Rm
−B2e

− 2πR
k

has a maximum point

R̄k =
( m

2π
+ o(1)

)
k ln k.

Theorem 1 follows from the variational reduction method.



Main Difficulties in the Absence of Symmetry

In the above proof, the fact that V is radially symmetry allows us
to build a K-bump solution for an arbitrary K ≥ 1 with a K-dyadic
symmetry, reducing the problem to just adjusting one parameter
representing the location of a single bump along a given ray.

When V is non-symmetric, we cannot constrain the bump
configuration to any symmetry class. We are thus forced to deal
with a large number of bumps and therefore with a huge number
of parameters which need to be adjusted. (In this case 2K number
of equations.) This poses a tremendous difficulty in the
construction comparatively to symmetry case.

Furthermore the critical point is in fact a saddle-point type. There
are large number of both positive and negative small eigenvalues.
To overcome this difficulty we develop an intermediate
Liapunov-Schmidt reduction method
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Intermediate Liapunov-Schmidt Reduction Method
In finite-dimensional reduction method, one moves the points
(which is a finite-dimensional space) in order to find the true
solution.

In infinite-dimensional Liapunov-Schmidt reduction method, one
moves the entire curves or surfaces (which are infinite-dimensional
space) in order to find a true interface.

In intermediate Liapunov-Schmidt reduction method, we move
large number of points (finite dimensional space) along
curves/surfaces (infinite dimensional space) in order to find a true
equilibrium.

In intermediate Liapunov-Schmidt reduction method, after finite
dimensional procedure, the large number of reduced equations, in
the limit, become an ODE/PDE system of limiting Jacobi-type
operators. In some sense this can be considered as discretized
version of infinite dimensional reduction method.



The main difference between the intermediate and infinite
dimensional reduction, is that in the latter procedure only the
variations in the normal direction are needed so the usual Jacobi
operator for a curve/surface appears

Fermi Coordinates : x = y + (t + h(y))νy, y ∈ Γ

J [h] = ∆Γ(h) + |A|2h
In the former procedure we also need to take into account
variations in the tangential direction of points, which in the limit
may be interpreted as a reparametrization of the curve.

Infinite dimensional Liapunov-Schmidt reduction method:
variations in normal direction only

Intermediate Liapunov-Schmidt reduction method: variations in
both normal and tangential directions
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Description of the construction

Let K ∈ N+ be the number of spikes, whose locations are given by
Qj ∈ RN , j = 1, . . . , K. We define

wQj (x) = w(x−Qj) and U(x) =
K∑

j=1

wQj (x), for x ∈ RN (7)

where {
−∆w + w − wp = 0, w > 0 in RN ,

w = w(|x|), w ∈ H1(RN ).

A natural and central question is how to choose Qj ’s such that a
small perturbation of U will be a genuine solution.



Assuming that

inf
1≤j≤K

|Qj | → ∞ and inf
j 6=l
|Qj −Ql| → ∞,

by the asymptotic behaviour of V at infinity and the property of w,
one can get (at least formally) the following energy expansion

I[U ] = KI0 + a0

K∑

j=1

|Qj |−m − 1
2
γ0

∑

j 6=l

w(|Qj −Ql|)
︸ ︷︷ ︸

J(Q1,...,QK)

+other terms,

(8)

where I0, a0 and γ0 are positive constants. Here we denote the
leading order expansion as J(Q1, ..., QK).



Observe that for any rotation Rθ around the origin in RN , there
holds

J(RθQ1, . . . , RθQK) = J(Q1, . . . , QK).

Hence any critical point of J(Q1, . . . , QK) is degenerate.
Therefore, except in the symmetric class, it is not easy to find
critical points of small perturbations of J(Q1, . . . , QK).



Initial Configuration

We choose initial configuration as follows

Q0
j (α) = (R cos θj , R sin θj , 0) ∈ R2 × {0}, for j = 1, . . . ,K,

where

θj = α + (j − 1)
2π

K
∈ R.

I R = R̄k =
(

m
2π + o(1)

)
K lnK is the radius in the radial

trapping potential case,

I α is the starting point on the curve, to be determined later.
Observe that each point Q0

j depends on α. Thus we write

Q0
j = Q0

j (α). If V (x) is radially symmetric, it is obvious that
the parameter α plays no role in the construction. But it is
very important in our construction as we will see later.



Perturbed Configuration

Let fj , gj ∈ R, j = 1, . . . ,K, we define

Qj = Q0
j + fj~nj + gj~tj = (R + fj)~nj + gj~tj , (9)

where

~nj = (cos θj , sin θj , 0) , and ~tj = (− sin θj , cos θj , 0) .

~nj–normal direction
~tj–tangential direction

I fj and gj measure the displacement in the normal and
tangential directions respectively. Define

q = (f1, · · · , fK , g1, · · · , gK)T ∈ R2K .

I together with α there are now 2K + 1 free parameters



q̇ = (ḟ1, · · · , ḟK , ġ1, · · · , ġK)T , and q̈ = (f̈1, · · · , f̈K , g̈1, · · · , g̈K)T ,

ḟj = (fj+1 − fj)
K

2π
, f̈j = (fj+1 − 2fj + fj−1)

K2

4π2
,

ġj = (gj+1 − gj)
K

2π
, g̈j = (gj+1 − 2gj + gj−1)

K2

4π2
,

fK+1 = f1, f0 = fK , gK+1 = g1, g0 = gK .

Observe that if fj = f(θj) for some 2π periodic smooth function
f , then ḟj is the forward difference of f and f̈j is the 2nd order
central difference of f .
Norm for q:

‖q‖∗ = ‖q‖∞ + ‖q̇‖∞ + ‖q̈‖∞ ≤ 1.



To prove Theorem 2, it is sufficient to show that for K sufficiently
large there are parameters α and q such that U + ϕ is a genuine
solution for a small perturbation ϕ. To achieve this goal, we will
use finite dimensional Lyapunov-Schmidt reduction.



Step 1: Solving the projected problem.
Let α ∈ R and q be defined as before. We look for a function ϕ
and some multiplier β̂ ∈ R2K such that

{
L[ϕ] + E + N(ϕ) = β̂ · ∂U

∂q ,
∫
RN ϕZQj dx = 0, ∀ j = 1, . . . , K,

(10)

where the vector field ZQj is defined by

ZQj (x) = ∇w(x−Qj). (11)

By direct computation, we have

∂U

∂q
= −(ZQ1 · ~n1, · · · ,ZQK

· ~nK ,ZQ1 · ~t1, · · · ,ZQK
· ~tK

)T
.

This is the first step in the Lyapunov-Schmidt reduction. Hence we
write ϕ = ϕ(x; α,q) and β̂ = β̂(α,q).



Step 2: Solving the reduced problem
Reduced Problem:

β̂(α,q) = 0

This can not be solved directly since the linear part of the
expansion of β̂ in q is degenerate (due to the invariance of
J(Q1, . . . , QK) under rotations).

β̂(α,q)

= a0R
−m−2Tq + R−m−σΠ1(α,q) + R−m−3Π2(α,q) + R−2mΠ3(α,q)

+ R−min{2−η, p+1−η
2

}mΠ4(α,q) + R−m−3(lnK)2Π5(α,q, q̇, q̈)

where Π1(α,q), . . . ,Π4(α,q),Π5(α,q, q̇, q̈) are uniformly
bounded smooth vector valued functions with Π5(α, 0, 0, 0) = 0,
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More precisely, let us write

Rm+2β̂(α,q) = Tq + Φ(α,q),

where Tq is the linear part and Φ(α,q) denotes the remaining
term. Tq does not depend on α and there is a unique vector (up
to a scalar)

q0 = (0, . . . , 0︸ ︷︷ ︸
K

, 1, . . . , 1︸ ︷︷ ︸
K

)T ∈ R2K

such that Tq0 = 0.



T is an 2K × 2K circulant matrix defined by

T =




c1 A1 + c4 I c2 A2

−c2 A2 c3 A1


 , (12)

Both A1 and A2 are K ×K circulant matrices given by

A1 =




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0
0 1 −2 1 0 · · ·
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −2 1
1 0 · · · 0 1 −2




, A2 =




0 1 0 · · · 0 −1
−1 0 1 0 · · · 0
0 −1 0 1 0 · · ·
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 0 1
1 0 · · · 0 −1 0




,



A1, A2 are circulant matrices are K×K circulant matrices. In fact,

A1 = circ
{
(−2, 1, 0, . . . , 0, 1)

}
and A2 = circ

{
(0, 1, 0, . . . , 0,−1)

}
.

whose eigenvalues can be computed.

Important: 0 is always an eigenvalue with eigenvector q0.



An important observation is that the system Tq = b can be seen
as the discretization of the following continuous system:





−(m + 1)f(θ) + (f ′′ − g′)(θ) + d̂(f + g′)(θ) = ϕ(θ), θ ∈ (0, 2π),

g(θ) + (f ′ − g)(θ)− d̂(f ′ + g′′)(θ) = ϕ(θ), θ ∈ (0, 2π),
f(0) = f(2π), f ′(0) = f ′(2π), g(0) = g(2π), g′(0) = g′(2π).

(13)

Jacobi-like operators



Lemma
Given ϕ,ϕ satisfying

∫ 2π
0 ϕ = 0, the system (13) has a unique

solution (f, g) satisfying
∫ 2π
0 g = 0. Moreover, there exists a

constant C > 0 such that

‖f‖C2([0,2π]) + ‖g‖C2([0,2π]) ≤ C
(‖ϕ‖C0([0,2π]) + ‖ϕ‖C0([0,2π])

)
.

(14)

Continuous version of solvability of Jacobi operators.



The discretized version of the above lemma gives the invertibility
of T .

Lemma
There is an K0 ∈ N such that for all K ≥ K0 and every b ∈ R2K ,
there exists a unique vector q ∈ R2K and a unique constant γ ∈ R
such that

Tq = b + γ q0, q ⊥ q0. (15)

Moreover, there is a positive constant C which is independent of
K such that

‖q‖2 ≤ C‖b‖2, ‖q̇‖2 ≤ C(lnK)1/2‖b‖2, and ‖q̈‖2 ≤ C(lnK)3/2‖b‖2.
(16)

Furthermore, the number of zero (negative, positive) eigenvalues
of T is 1 (K − 1, K), respectively.



By the Lyapunov-Schmidt reduction again, the step of solving the
reduced problem β̂(α,q) = 0 is reduced to

β̂(α,q)
∂U

∂q
= γ(α)

∂U

∂α

Then the original problem (P) is reduced to the problem γ(α) = 0
of one dimension.



Step 3. Solving γ(α) = 0 by choosing α.
At the last step, we want to prove that there exists an α such that
γ(α) = 0. As a result, the function u = U + ϕ is a genuine
solution of problem (P).
To achieve this step, by Step 2, the function ϕ = ϕ(x; α,q(α))
found in Step 1 solves the following problem:

{
L[ϕ] + E + N(ϕ) = γ(α)∂U

∂α ,
∫
RN ϕZQj dx = 0, ∀ j = 1, . . . , K,

(17)

where all of the quantities depending implicitly on (α,q) are taken
values at (α,q(α)).



To solve γ(α) = 0, we apply the so-called variational reduction to
show that equation γ(α) = 0 has a solution if the reduced energy
function

M(α) = I[U + ϕ]

has a critical point.

Since M(α) is 2π periodic in α, it has at least two critical points,
either maximum or minimum points.

As a result, for each K >> 1, we obtain at least TWO solutions to
Theorem 2.



II.Sign-changing Solutions to Yamabe Problem

(II) ∆u + |u| 4
N−2 u = 0, in RN , N ≥ 2

Classical Known Results on Positive Solutions

∆u + u
N+2
N−2 = 0, u > 0 in RN

I (Cafferalli-Gidas-Spruck 1989; Chen-Li 1993) All solutions are
given by

Uε,ξ(x) = CN

( ε

ε2 + |x− ξ|2
)N−2

2
.

I (nondegeneracy) The linearized opertaor

∆ϕ +
N + 2
N − 2

U
4

N−2

ε,ξ ϕ = 0, ‖ϕ‖L∞(RN ) < +∞
consists of exactly N + 1 dimensional kernels:

∂U

∂ε
,
∂U

∂ξj
, j = 1, ..., N



These N + 1 dimensional kernels corresponds to exactly the
following invariances of Yamabe problem

∆u + u
N+2
N−2 = 0, u > 0 in RN

I (scaling) λ
N−2

2 u(λ·) is also a solution

I (translation) u(x− ξ) is also a solution



Sign-Changing solutions

∆u + |u| 4
N−2 u = 0 in RN . (18)

Existence of infinitely many sign-changing solutions (non-radial)
I Ding 1986: assume partial symmetry; u(x

′
, x

′′
) = −u(x

′′
, x

′
)

I del Pino-Musso-Pacard-Pistoia 2012: For K >> 1, found a
solution to (18)

UK(x) ∼ U(x)−
K∑

j=1

Uµj (x− ξj) (19)

where

U(x) = CN

(
2

1 + |x|2
)N−2

2

, Uµ(x) = µ−
N−2

2 U(µ−1x)

(20)
where

µ = µ(K), ξl =
√

1− µ2 (1, 0)ei
2π(l−1)

K



Symmetries of Yamabe Problem

∆u + |u| 4
N−2 u = 0

The proof of del Pino-Musso-Pistoia-Pacard uses the following
invariances of the equation:
•• Rotation Invariance : for (ȳ, y′) ∈ R2 × RN−2,

u(ȳ, y′) = u
(
e

2π
K

√−1ȳ, y′
)

•• Reflection Invariance:

u(−y1, y2, y
′
) = u(y1,−y2, y3) = u(y1, y2, |y′ |).

•• Kelvin Transform Invariance:

u(y) = u|y|−(N+2)u

(
y

|y|2
)

.

•• Scaling Invariance:

u(y) = λ
N−2

2 u(λy)

These invariances reduce the problem to one parameter problem:
adjusting the scaling parameter of negative bumps



Let UK be the solution constructed by del
Pino-Musso-Pacard-Pistoia

∆UK + |UK |
4

N−2 UK = 0

Question: Is UK non-degenerate ?
Namely, what are possible kernels of

∆ϕ +
N + 2
N − 2

|Uk|
4

N−2 ϕ = 0, ‖ϕ‖L∞ < +∞?

Understanding the non-degeneracy (and the kernels) is one of the
most important steps in the study of bubbling behaviors or soliton
dynamices in nonlinear Schrodinger (wave) equation (work of
Kenig-Merle)
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Possible Kernels

Let

L(ϕ) = ∆ϕ +
N + 2
N − 2

|UK |
4

N−2 ϕ (21)

We have
L(Zj) = 0, j = 0, . . . , N + 1. (22)

where

I Z0(x) = ∂
∂Λ [Λ−

N−2
2 u(Λ−1x)]|Λ=1 (scaling invariance)

I Zj(x) = ∂
∂xj

u(x), j = 1, ..., K (translation invariance)

I ZN+1(x) = ∂
∂θ [u(Rθx)]|θ=0 (rotation invariance)

where Rθ is the rotation in the x1, x2 plane of angle θ.



Theorem 3. (Musso-Wei 2013) Assume that N 6= 2m2, for any
integer m. Then there exists a sequence Kn →∞ such that all
bounded solutions to the equation

∆ϕ +
N + 2
N − 2

|UK |
4

N−2 ϕ = 0

are a linear combination of the functions Zj(x), for
j = 0, 1, . . . , N + 1.

•• Unlike the positive solution case, the dimension of the kernels is
N + 2. (ZN+1 = 0 in the positive solution case.)
•• resonance dimensions:

N 6= 8, 18, 32, ..., 2m2, ...

•• resonance condition in K:

|m
K
− τ0| ≥ C

K2

τ0 is an irrational number (a root of a polynomial).
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Scheme of the proof

Let ϕ a bounded function with L(ϕ) = 0. Write

ϕ =
N+1∑

j=0

ajZj(x) + ϕ̃⊥

with ∫
U

4
N−2

K Zjϕ̃
⊥ = 0, j = 0, . . . , N + 1

We want to show that ϕ̃⊥ = 0.



There are K + 1 bubbles: each bubble contributes to N + 1
dimensional approximate kernels:
Approximate Kernels at the center bubble

z0(y) =
N − 2

2
U(y) +∇U(y) · y, zi(y) =

∂

∂xi
U(y)

Approximate Kernels at the circle bubble: For any l = 1, . . . , K,
we define

zαl(x) = µ
−N−2

2
l zα(

x− ξl

µl
), α = 0, . . . , N

Zα(x) =




zα1(x)
zα2(x)

..
zαK(x)






Write ϕ =
∑N+1

j=0 ajZj(x) + ϕ̃⊥ with L(ϕ) = 0 and

ϕ̃⊥ =
N∑

α=0

cα · Zα(x) + ϕ⊥

with
∫

U
4

N−2
µl (x− ξl)Zαl(x)ϕ⊥ = 0, l = 1, . . . , K, α = 0, . . . , N.

Thus

ϕ̃⊥ ≡ 0 ⇐⇒ cα = 0 for all α and ϕ⊥ ≡ 0.



Now

L(ϕ) = 0 =⇒ L(
N∑

α=0

cα · Zα(x) + ϕ⊥) = 0

since
L(Zi) = 0 i = 0, . . . , N + 1.

Take

L(
N∑

α=0

cα · Zα(x) + ϕ⊥) = 0 (23)



We multiply (23) against Zβl, for β = 0, . . . , N and l = 1, . . . , K,
we integrate in Rn and we get a linear system in the constants cαj

of the form

M




c0

c1

..
cn


 =




b0

b1

..
bn




where M is a square matrix of dimension [(N + 1)×K]2

M =
[

M1 0
0 M2

]

where M1 is a square matrix of dimension (3×K)2 and M2 is a
square matrix of dimension [(N − 2)×K]2.



M1 =




A B C
B F D
C D G




M2 =




H3 0 0 0 0
0 H4 0 0 0
.. .. .. .. ..
0 0 0 HN−1 0
0 0 0 0 HN




All the matrices

A,B, C,D, F ,G,H3, ..., HN

are K ×K circulant matrices



A circulant matrix, K ×K:

A1 = CN µ̄N−4circ[0,
1

(1− cos θ2)
N−2

2

,
1

(1− cos θ3)
N−2

2

, ..,
1

(1− cos θk)
N−2

2

]

Eigenvalues: for m = 0, . . . , K − 1

λm = C
∑

l 6=1

cos(mθl)

(1− cos θl)
N−2

2

= C1

∑

l 6=1

cos(mθl)
(l − 1)N−2

= C1

∑

l 6=1

cos((l − 1)θm+1)
(l − 1)N−2

= AN−2(θm+1)

Now: AN−2 is decreasing in (0, π),

AN−2(π) = (−1 +
1

2N−3
)AN−2(0) < AN−2(θ) < AN−2(0)

We have AN−2(0) > 0, while (−1 + 1
2N−3 )AN−2(0) < 0. So for

some θ AN−2(θ) = 0
Resonance on K !!!



F circulant matrix, K ×K. First row of F is CN µ̄N−2×
[

(N − 2)ΛN−2,k +
∑

l 6=1
N cos(θl)−(N−2)

(1−cos θl)
N
2

(N−2) cos θ2−N

(1−cos θ2)
N
2

... (N−2) cos θk−N

(1−cos θk)
N
2

]

Eigenvalues: for m = 0, . . . , K − 1

λm =
N − 2

2
N
2

µ
N−2

2

[
m2 − N

2
+ l.o.t

]

Resonance when N = 2m2



C circulant matrix, K ×K. First row of C is − (N−2)2

2
N
2

µ̄N−3×
[

0 sin θ2

(1−cos θ2)
N
2

sin θ3

(1−cos θ3)
N
2

.. sin θK

(1−cos θK)
N
2

]

Eigenvalues: for m = 0, . . . , K − 1

λm = C
∑

l 6=1

sin(θl) cos(mθl)

(1− cos θl)
N−2

2

= 0

by symmetry.



D circulant matrix, K ×K. First row of D is (N−2)2

2
N
2

µ̄N−3×
[

0 sin θ2

(1−cos θ2)
N
2

sin θ3

(1−cos θ3)
N
2

.. sin θk

(1−cos θK)
N
2

]

Eigenvalues: for m = 0, . . . , K − 1

λm = C
∑

l 6=1

sin(θl) cos(mθl)

(1− cos θl)
N−2

2

= 0

by symmetry.



G circulant matrix, k × k. First row of G is − (N−2)

2
N+2

2

µ̄N−2×
[

2ΛN−2,k +
∑

l 6=1
N cos(θl)−(N−2)

(1−cos θl)
N
2

− (N−2) cos θ2−N

(1−cos θ2)
N
2

... − (N−2) cos θk−N

(1−cos θk)
N
2

]

Eigenvalues: for m = 0, . . . , k − 1

λm =
N − 2

2
N
2

µ
N−2

2
[
m2N −m2 + l.o.t

]

Hj are K ×K circulant matrices whose first row is given by

−(N − 2)

2
N
2

µ̄N−2
[

1 + ΛN,K − 1

(1−cos θ2)
N
2

... − 1

(1−cos θK)
N
2

]



Applications to Prescribed Scalar Curvature Problem
Consider the third problem which is well-known

{
−∆u = K(y)u

N+2
N−2 , u > 0 in RN

u ∈ D1,2(RN ),
(24)

where 0 < C1 ≤ K(y) ≤ C2.
Theorem (Wei-Yan 2010): Suppose that N ≥ 5. If K is radially
symmetric and there is a constant r0 > 0, such that

K(r) = K(r0)− c0|r − r0|m + O(|r − r0|m+θ), r ∈ (r0 − δ, r0 + δ)

where c0 > 0, θ > 0 are some constants, and the constant m
satisfies m ∈ [2, N − 2). Then problem (24) has infinitely many
non-radial positive solutions

Theorem (Musso-Wei 2013): Same result holds for nonradial

K(x) = K0 − c0d(x,Γ)m + O(d(x,Γ)m+θ), near Γ

where Γ = {|(x1, x2) = R, x
′
= 0} is a circle.



Thank You


