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Introduction

Let Γ0 be a smooth oriented curve in the upper half-plane
whose endpoints lie on the x-axis with given contact angles ψ−
on the left and −ψ+ on the right:

Γ0 := {(x(τ), y(τ)) : 0 ≤ τ ≤ 1},

(x′(τ), y′(τ)) 6= (0, 0) for 0 ≤ τ ≤ 1,

y(0) = y(1) = 0, x′(0) = y′(0) cotψ−, x′(1) = −y′(1) cotψ+.

contact angle: the angle of the tangent vector measured
from the positive x-axis with range (−π/2, π/2).

Thus the interior angles between Γ0 and the horizontal line
are ψ− and ψ+, respectively.
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Given such a curve Γ0, we consider a problem of finding a
family of oriented curves {Γ(t)}t≥0, with Γ(0) = Γ0, that evolve
by the curvature flow equation

V = κ+ c, (1)

while keeping the endpoints on the x-axis with the same fixed
contact angles as Γ0.

V : normal velocity, κ: the (signed) curvature, c > 0: a
driving force.

The signs of V, κ are chosen in accordance with the
orientation of the curve, in which the reference normal
vector points toward the left-hand side of the tangent
vector.
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When the curve Γ(t) is a graph of a function y = u(x, t),
x ∈ [l−(t), l+(t)], where l±(t) denote the position of the
endpoints of the curve Γ(t), the curvature flow (1) is reduced to
solving the following free boundary problem (P):

ut =
uxx

1 + u2x
+ c
√

1 + u2x, x ∈ (l−(t), l+(t)), t > 0, (2)

u(l±(t), t) = 0, t > 0, (3)

ux(l±(t), t) = ∓ tanψ±, t > 0, (4)

u(x, 0) = u0(x), x ∈ [l0−, l
0
+], l±(0) = l0±, (5)

where we assume that ψ± ∈ (0, π/2), c > 0 and
−∞ < l0− < l0+ <∞.
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We shall focus on the free boundary problem (P).

For simplicity, we always assume that{
u0(x) > 0 in (l0−, l

0
+) , u0(l0±) = 0,

u0x(l0±) = ∓ tanψ±, u
0 ∈ C2([l0−, l

0
+]).

(6)
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Remarks:

To obtain a priori estimates and some main results, we
need u0 ∈ C2([l0−, l

0
+]).

However, the local existence and uniqueness of a classical
solution to (P) can be derived as that in
[Chang-G.-Kohsaka03] by using a fixed point argument as
long as u0 ∈ C1+α([l0−, l

0
+]), α ∈ (0, 1). Indeed, the local

existence time depends only on the C1+α norm of the initial
data. The solution (u, l±) is in the class
C2+α,1+α/2 × [C1+α/2]2 for t > 0. This regularity also
extends to t = 0 if the initial data is in C2+α class.
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For the curvature flow (1) with c = 0, it appears in the study
of evolution of grain domains in polycrystals, see, e.g.,
[Gurtin93], [Herring51,52], [Mullins63].

The intersection of two grain domains forms a grain
boundary which is usually modeled by the curvature flow
(cf. [Adams et al 98,99], [Kinderlehrer-Liu01]).
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For mathematically rigorous studies of problem (P) with
c = 0, we refer to the work [Chen-G.11] and the references
cited therein. See also [Chang-G.-Kohsaka03],
[Chern-G.-Lo03], [G.-Hu06].

In particular, it is shown in [Chen-G.11] that the problem
(P) with c = 0 has a unique self-similar shrinking solution
and every solution Γ(t) shrinks to a point in finite time in an
asymptotically self-similar manner.
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For the problem (P) with c > 0, the asymptotic behavior of the
solution depends on the balance between the curvature and
the driving force.

If the curvature dominates the driving force, the curve Γ(t)

shrinks to a point in finite time, as in the case c = 0.

On the other hand, if the driving force dominates the
curvature eventually, the curve keeps expanding for all
large time.

It can also happen that the curvature remains in delicate
balance with the driving force. In that case, Γ(t) remains
bounded and converges either to a stationary solution or to
a traveling wave solution of (2)-(4).
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Main results:

Here and in what follows, [0, T ) will denote the maximal time
interval for the existence of a classical solution (u, l±) to the
problem (P), where T ∈ (0,∞].
We let A(t) denote the area of the domain enclosed by Γ(t) and
the x-axis, and L(t) the length of Γ(t), namely,

A(t) :=

∫ l+(t)

l−(t)
u(x, t)dx, L(t) :=

∫ l+(t)

l−(t)

√
1 + u2x(x, t)dx.
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Our first main result gives complete classification of the
behavior of solutions:

Theorem 1 (Classification)

Any solution of (P) belongs to one of the following types:

(A) [Expanding] T =∞, and both L(t) and A(t) tend to∞ as
t→∞.

(B) [Bounded] T =∞, and both L(t) and A(t) remain bounded
from above and below by two positive constants as t→∞.

(C) [Shrinking] T <∞, and both L(t) and A(t) tend to 0 as
t→ T .
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Some criteria for the above classification:
if the initial data satisfies

A(0) >
1

π

(
ψ+ + ψ−

c

)2

,

then the solution is of type (A), while if

L(0) <
2(1− cosψmin)

c
, ψmin := min{ψ−, ψ+},

the solution is of type (C).
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The next results are concerned with the concavity of the
solution.

Theorem 2 (Preservation of concavity)

Suppose that u(x, t0) is concave for some t0 ∈ [0, T ), then it
remains strictly concave for all t ∈ (t0, T ). In particular,
uxx(x, t) < 0 for x ∈ (l−(t), l+(t)) for all t ∈ (0, T ), if (u0)xx ≤ 0

on (l0−, l
0
+).
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Theorem 3 (Eventual concavity in the bounded case)

Let (u, l±) be a solution of type (B). Then there exists t∗ ≥ 0

such that u(·, t) is strictly concave for all t ∈ (t∗,∞).

Theorem 4 (Eventual concavity in the shrinking case)

Let (u, l±) be a solution of type (C). Then there exists t∗ ∈ [0, T )

such that u(·, t) is strictly concave for all t ∈ (t∗, T ).
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Our final results give more precise description of the asymptotic
behavior of solutions for types (A)–(C).

For the type (A), as time passes, the effect of the curvature
becomes smaller and smaller compared with the constant
forcing term, so one may expect that the asymptotic behavior of
the solution is well approximated by the solution of V = c.

Indeed, the profile of the solution approaches that of a
self-similar solution of V = c.
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To explain this result, we first note that the solution of V = c is
expressed by the graph of a function y = g(x, t) satisfying

gt = c
√

1 + g2x. (7)

Under the boundary conditions corresponding to (3) and (4),
the above equation has a unique self-similar solution of the
form g(x, t) = tG(x/t), where G(ζ) is a function that is defined
on some interval p̂ ≤ ζ ≤ q̂ and satisfies

G(ζ) > 0, G(ζ)− ζG ′(ζ) = c
√

1 + (G ′)2(ζ), p̂ < ζ < q̂, (8)

along with the boundary conditions

G(p̂) = G(q̂) = 0, G ′(p̂) = tanψ−, G ′(q̂) = − tanψ+. (9)
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The constants p̂, q̂ ∈ R with p̂ < q̂ are determined uniquely by
the condition

− p̂ sinψ− = q̂ sinψ+ = c. (10)

For any given ψ± ∈ (0, π/2) and c > 0, the problem (8)-(9) is
solvable if and only if (10) holds, and the solution is given by

G(ζ;ψ±) :=


(tanψ−)(ζ − p̂), p̂ ≤ ζ ≤ −c sinψ−,√
c2 − ζ2, −c sinψ− ≤ ζ ≤ c sinψ+,

−(tanψ+)(ζ − q̂), c sinψ+ ≤ ζ ≤ q̂
(11)

with p̂, q̂ as in (10). From (10) one sees that p̂ < −c < 0 < c < q̂.
Geometrically, the graph of G consists of a part of the circle and
two line segments in the upper half plane.



Introduction Main results Some key ideas

Theorem 5 (Asymptotics for the expanding case)

Let (u, l±) be a type (A) solution of (2)-(5) and let G = G(ζ;ψ±)

be defined by (11). Then there exist a function ρ(t) satisfying
limt→∞[ρ(t)/t] = 1 and a constant t0 > 0 such that

ρ(t)G
( x

ρ(t)

)
≤ u(x, t) ≤ (t+ t0)G

( x

t+ t0

)
(12)

for all x ∈ [l−(t), l+(t)] and t > 0. Consequently

lim
t→∞

±l±(t)

t
=

c

sinψ±
, (13)

lim
t→∞

u(x, t)

tG(x/t)
= 1 uniformly on cpt subsets of R. (14)

In (12), G := 0 outside the interval [p̂, q̂].
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Next, in the case of type (B), one may expect that the solution
converges to a stationary solution if a stationary solution exists.

Indeed, when ψ+ = ψ−, the problem (P) admits a stationary
solution whose shape is a portion of a circle with radius 1/c.

However, in the case ψ+ 6= ψ−, there is no positive stationary
solution. Actually, in this case the solution converges to a
traveling wave in the form u(x, t) = Φ(x− νt− a), where ν
denotes the wave speed, Φ(ξ) is a function that defines the
profile of the wave and a is an arbitrary constant that adjusts
the phase.
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Substituting this form into (2)-(4) yields the following, where
β > 0 is some constant and Φ is normalized in such a way that
the center of its support comes to the origin:

Φξξ

1 + Φ2
ξ

+ νΦξ + c
√

1 + Φ2
ξ = 0 in (−β, β),

Φ(±β) = 0, Φξ(±β) = ∓ tanψ±.

(15)

Multiplying (15) by Φξ/
√

1 + Φ2
ξ and integrating it over [−β, β],

we easily see that ν > 0 (resp. = 0, < 0) if and only if
ψ− − ψ+ > 0 (resp. = 0, < 0).
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From the physical point of view, the condition ψ+ 6= ψ− means
that the surface tension on the floor that pulls the curve is
different between the left and right endpoints, since the contact
angle is determined by the relation between the surface tension
on the floor and that on the curve. This explains intuitively why
a traveling wave appears when ψ+ 6= ψ−.



Introduction Main results Some key ideas

Thus, if ψ− = ψ+ =: ψ, we have ν = 0, in which case Φ is a
stationary solution.
We shall distinguish this case by using the notation ϕ instead of
Φ: 

ϕxx
1 + ϕ2

x

+ c
√

1 + ϕ2
x = 0 in (−β, β),

ϕ(±β) = 0, ϕx(±β) = ∓ tanψ.

The solution ϕ represents a portion of a circle with radius 1/c.
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In the following theorem, we understand that Φ = 0 outside the
interval [−β, β].

Theorem 6 (Asymptotics for the bounded case)

(i) There exist unique constants β > 0 and ν ∈ R and a
unique function Φ(ξ) that satisfy (15). Furthermore, the
sign of ν coincides with the sign of ψ− − ψ+.

(ii) Let (u, l±) be a solution of type (B). Then there exists a
constant a ∈ R such that u(x, t)→ Φ(x− νt− a) uniformly
for x ∈ [l−(t), l+(t)], and that l±(t)− νt→ a± β as
t→ +∞, where Φ, ν, β are as in (15). In the special case
where ψ− = ψ+ =: ψ, this means that u converges to a
stationary solution ϕ(x− a) as t→ +∞.
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Lastly, as for type (C), we shall show that the curve Γ(t) shrinks
to a point as t→ T in a self-similar manner.

In this case, as t approaches T , the solution behaves like a
solution of V = κ under the same boundary conditions.
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We introduce the following similarity transformation:

z =
x√

2(T − t)
, s = −1

2
ln(T − t) ,

u(x, t) =
√

2(T − t)w(z, s),

l−(t) =
√

2(T − t) p(s), l+(t) =
√

2(T − t) q(s).

By spatial translation, we may assume without loss of
generality that x = 0 is the limit point of the shrinking curve.
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Then u satisfies (2)-(5) if and only if w satisfies

ws =
wzz

1 + w2
z

− zwz + w +
√

2ce−s
√

1 + w2
z ,

z ∈ (p(s), q(s)), s > s0, (16)

w(p(s), s) = w(q(s), s) = 0, s > s0, (17)

wz(p(s), s) = tanψ−, wz(q(s), s) = − tanψ+, s > s0,(18)

w(z, s0) = w0(z) := (2T )−1/2u0(z
√

2T ),

z ∈ [l0−/
√

2T , l0+/
√

2T ], (19)

where s0 := −1
2 lnT .
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If c = 0, the equation (16) is autonomous, and the stationary
problem for (16)-(18) is given in the form

ϕzz
1 + (ϕz)2

− zϕz + ϕ = 0, z ∈ (p̄, q̄), (20)

ϕ(p̄) = ϕ(q̄) = 0, (21)

ϕz(p̄) = tanψ−, ϕz(q̄) = − tanψ+ (22)

for some p̄ < q̄.

It is shown in [Chen-G.11] that, for any ψ± ∈ (0, π/2), the
problem (20)– (22) has a unique solution ϕ(z); the constants
p̄, q̄ are also uniquely determined by ψ±.
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Note that, when c 6= 0, the equation (16) is no longer
autonomous but is asymptotically autonomous as s→ +∞.

The following theorem gives asymptotics for type (C) in terms of
the rescaled solution w.

Theorem 7 (Asymptotics for the shrinking case)

Let (u, l±) be a solution of type (C) and (w, p, q) be the
corresponding solution of (16)-(19). Then (w(z, s), p(s), q(s))

converges to the unique solution of (20)-(22) as s→ +∞
uniformly for y ∈ [p(s), q(s)].
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The solution of (20)-(22) corresponds to a self-similar
shrinking solution of the form

u(x, t) =
√

2(T − t)ϕ
( x√

2(T − t)

)
to the problem (P0), that is, the problem (P) with c = 0.

Theorem 7 asserts that any shrinking solution of (P)
behaves like the unique self-similar solution of (P0) as t
approaches T .

Intuitively this sounds reasonable as the curvature tends to
infinity in the case (C) and therefore the driving force c
should become negligible.
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Some key ideas

One of the main tools in this paper is the intersection
number argument.

However, as we are dealing with a free boundary problem
in which the endpoints of the curve can slide freely along
the x-axis, the standard intersection number principle (of
[Angenent88] and [Matano82]) dose not work.

Indeed, the number of intersections between two solutions
may increase in time.
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To overcome this difficulty, we introduce the notion of
extended intersection number by extending the solutions
linearly below the x-axis outside their domain of definition,
and counting the number of intersections between the
extended solutions.

It turns out that this extended intersection number does not
increase in time; moreover, it drops strictly each time a
multiple zero occurs. We call this property the extended
intersection number principle, which turns out to be
exceedingly useful in analyzing the problem (P) such as
the concavity properties.
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For a strictly concave solution, the problem (P) can be
reduced to the following problem for the curvature:

κt = κ2(κθθ + κ+ c), −ψ+ < θ < ψ+, t > 0,

κθ = (κ+ c) cot θ, θ = ∓ψ±, t > 0,

κ(θ, 0) = κ0(θ), −ψ+ < θ < ψ−,

where θ(x, t) := arctanux(x, t) and the initial data κ0
satisfies ∫ ψ−

−ψ+

sin θ

κ0(θ)
dθ = 0.

The stationary solutions are given by κ = −ν sin θ − c for
ν ∈ R. This gives ut = −νux, a traveling wave solution.
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The methods for proving the theorems on asymptotics for
types (A)-(C) are all different.

For the expanding case, we use the method of
super-sub-solutions.

For the area bounded case, we apply the extended
intersection number principle to show the convergence of
the solution to a traveling wave or a steady-state.

It is somewhat surprising that such a convergence result
follows simply by counting the intersection numbers,
without constructing a Lyapunov functional.
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As for the shrinking case, the proof of Theorem 7 goes in
two steps:

We first show that the aspect ratio of the curve remains
bounded by using an idea similar to [Grayson87]. The
boundedness of the aspect ratio implies that the rescaled
solution w possesses certain compactness properties.

We then use a Lyapunov functional borrowed from
[Huisken90]. Here, as equation (16) is non-autonomous
since c 6= 0, the Lyapunov functional is not necessarily
decreasing. However, since the perturbation term decays
exponentially as s→ +∞, it creates no problem in proving
the convergence.
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