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Introduction

The Chern-Simons theories were developed to explain certain
condensed matter phenomena, anyon physics, superconductivity,
and quantum mechanics. See [Dunne, Self-Dual Chern-Simons
Theory, Springer-Verlag, 1995 ] for more detail.
The (2+1)-dimensional relativistic Abelian Chern-Simons-Higgs
model proposed by [Hong-Kim-Pac, Phys. Rev. Lett., 1990] and
[Jackiw-Weinberg, Phys. Rev. Lett.,1990] was to explain high
temperature superconductivity. They derived the following elliptic
partial differential equation:
Abelian Chern-Simons equation

∆u +
1

ε2
eu(1− eu) = 4π

N
∑

i=1

δpi

Here, ∆ = ∂2

∂x21
+ ∂2

∂x22
, ε is a constant and δp is the Dirac measure

in R
2.



∆u +
1

ε2
eu(1− eu) = 4π

N
∑

i=1

δpi

This equation has been extensively studied for the past twenty
years. See the works [Wang, CMP, 1991], [Spruck-Yang, CMP,
1992], [Caffarelli-Yang, CMP ,1995], [Tarantello, JMP, 1996],
[Chae-Imanuvilov, CMP ,2000], [Nolasco-Tarantello2000]
[Nolasco-Tarantello, CMP ,1999], [Chan-Fu-Lin, CMP .2002],
[Choe, CPDE ,2009], [Lin-Yan, CMP ,2010], [Choe-Kim-Lin, Ann.
Inst. H. Poincaré Anal., 2011], [Lin-Yan, ARMA, 2012]. In these
works, equations were studied either in R

2 or flat torus in R
2.



Some Properties for the Entire Radial Solution

Consider the entire radial solution of Abelian Chern-Simons
equation with all vertex points at the origin.

∆u + eu(1− eu) = 4πN0.

◮ u(r) < 0 on (0,∞) unless u ≡ 0.
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Some Properties for the Entire Radial Solution

Consider the entire radial solution of Abelian Chern-Simons
equation with all vertex points at the origin.

∆u + eu(1− eu) = 4πN0.

◮ u(r) < 0 on (0,∞) unless u ≡ 0.

◮

lim
r→∞

u(r) = 0 or −∞

If limr→∞ u(r) = 0, then u is called topological solution;
limr→∞ u(r) = −∞, then u is called non-topological solution.
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Some Properties for the Entire Radial Solution
Consider

rur (r) = 2N −

∫ r

0
seu(1− eu)ds.

Note that eu(1− eu) > 0. Suppose eu(1− eu) ∈ L1(R2), then
either

limr→∞rur (r) = 0 (limr→∞u(r) = 0)

or

limr→∞rur (r) = −β̃ (u(r) = −β̃ log r + O(1) near ∞).

Denote β =
∫∞
0 eu(1− eu)rdr . Then β̃ = β − 2N.

◮ β > 4N + 4 if u is a non-topological solution.

◮ ([Chan and Fu and Lin, CMP, 2002]) For β > 4N + 4, there
exists a unique non-topological solution such that

∫ ∞

0
reu(1− eu)dr = β.



Non-Abelian Chern-Simons System of Rank 2

We consider the the entire radial solutions to the Non-Abelian
Chern-Simons Systems of rank 2

(

∆u
∆v

)

= −K

(

eu

ev

)

+ K

(

eu 0
0 ev

)

K

(

eu

ev

)

+

(

4πN1δ0
4πN2δ0

)

in R
2,

(1)

where Ni ≥ 0, i = 1, 2, K =

(

α −β

−γ δ

)

satisfying

α, β, γ, δ > 0 and αδ − βγ > 0. (2)



This system appears in many physical models, for example:

(1) The relativistic non-Abelian Chern-Simons model

(2) Lozano-Marqués-Moreno-Schaposnik model of bosonic sector
of N = 2 supersymmetric Chern-Simons-Higgs theory

(3) Gudnason model of N = 2 supersymmetric
Yang-Mills-Chern-Simons-Higgs theory.

We refer to [Kao-Lee, Phys. Rev. D, 1994 ],[Dunne, Phys. Lett.
B, 1995], [Lozano, Phys. Lett B, 2007] , [Gudnason, Nucl. Phys.
B, 2009 ] for physical backgrounds of these models.
In the relativistic non-Abelian Chern-Simons model, K is a Cartan
matrix. There are three types of Cartan matrix of rank 2, which
are given by

A2 =

(

2 −1
−1 2

)

,B2 =

(

2 −1
−2 2

)

,G2 =

(

2 −1
−3 2

)

.



∆ua+
1

ε2

(

N
∑

b=1

Kabe
ub−

N
∑

b=1

N
∑

c=1

eubKbce
ucKac

)

= 4π

Na
∑

j=1

δpa
j
, a = 1, · · · ,N

Let (K−1)ab be the inverse of the matrix K , and assume

r
∑

b=1

(K−1)ab > 0, a = 1, 2, · · · ,N. (3)

A solution u = (u1, · · · , uN) is called topological solution if

ua(x) → log
(

N
∑

b=1

(K−1)ab

)

as |x | → +∞ a = 1, 2, · · · ,N;

is called non-topological solution if

ua(x) → −∞ as |x | → +∞ a = 1, 2, · · · ,N.



∆ua+
1

ε2

(

N
∑

b=1

Kabe
ub−

N
∑

b=1

N
∑

c=1

eubKbce
ucKac

)

= 4π

Na
∑

j=1

δpa
j
, a = 1, · · · ,N.

◮ existence of topological solutions in R
2:

◮ [Yang, CMP, 1997]:
∑r

b=1(K
−1)ab > 0, K = PS

◮ existence of solutions on a torus:
◮ [Nolosco-Tarantello, CMP, 2000]: A2

◮ [Han-Lin-Tarantello-Yang, 2013]: Gudnason model

◮ [Han-Tarantello, 2013]: K =

(

α −β

−γ δ

)

satisfies

α, β, γ, δ > 0 and αδ − βγ > 0.



∆ua+
1

ε2

(

N
∑

b=1

Kabe
ub−

N
∑

b=1

N
∑

c=1

eubKbce
ucKac

)

= 4π

Na
∑

j=1

δpaj , a = 1, · · · ,N

◮ existence of non-topological solutions in R
2:

◮ [Ao-Wei-Lin, 2012]: A2 and B2

◮ [Choe-Kim-Lin, 2013]: A2( Radial Solutions)

◮ existence of bubbling solution on a torus:
◮ [Yan-Lin, CPAM, 2013]: A2
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Consider the entire radial solutions of
(

∆u
∆v

)

= −K

(

eu

ev

)

+ K

(

eu 0
0 ev

)

K

(

eu

ev

)

+

(

4πN1δ0
4πN2δ0

)

in R
2,

(4)

where Ni ≥ 0, i = 1, 2, K =

(

α −β

−γ δ

)

satisfying

α, β, γ, δ > 0 and αδ − βγ > 0.

Question 1: Can we classify the entire radial solutions of the above
system according to their behaviors at infinity?
The main difficulty is the nonlinear terms in (4) may change sign,
hence it is not easy to see whether the nonlinear terms ∈ L1(R2) or
not.



By considering the transformation

(u, v) →
(

u + log
β + δ

αδ − βγ
, v + log

α+ γ

αδ − βγ

)

and letting
(β(α + γ)

αδ − βγ
,
γ(β + δ)

αδ − βγ

)

= (a, b).

Then (1) becomes























∆u = −(1 + a)eu + aev + (1 + a)2e2u − a(1 + b)e2v

+ a(b − (1 + a))eu+v + 4πN1δ0

∆v = beu − (1 + b)ev − b(1 + a)e2u + (1 + b)2e2v

+ b(a − (1 + b))eu+v + 4πN2δ0

(5)

When u = v , N1 = N2 in (5), then it is reduced to the Abelian
Chern-Simons equation

∆u + eu(1− eu) = 4πNδ0



Theorem 1
(H. and C.S. Lin, 2013) Suppose (u(r), v(r)) is an entire radial
solution to (5). One of the following holds.

(i) limr→∞(u, v) = (0, 0).

(ii) limr→∞(u, v) = (−∞,−∞), and eu , ev ∈ L1(R2).

(iii) limr→∞(u, v) = (log 1
1+a

,−∞) or (−∞, log 1
1+b

), which is

called a mixed-type solution. Furthermore, eu ∈ L1(R2) if
u → −∞ as r → ∞; ev ∈ L1(R2) if v → −∞ as r → ∞



Remark 1

Consider K =

(

0 1
1 0

)

in (1). Then (1) becomes

{

∆u + ev (1− eu) = 4πN1δ0

∆v + eu(1− ev ) = 4πN2δ0
in R

2, (6)

which is the system of Chern-Simons model with two Higgs
particles. In [Chern-Chen-Lin, CMP, 2010], if
limr→∞(u(r), v(r)) = (−∞,−∞), then the decay rate of (u, v)
may be slow so that eu and ev are not both in L1(R2).



Remark 1

Consider K =

(

0 1
1 0

)

in (1). Then (1) becomes

{

∆u + ev (1− eu) = 4πN1δ0

∆v + eu(1− ev ) = 4πN2δ0
in R

2, (6)

which is the system of Chern-Simons model with two Higgs
particles. In [Chern-Chen-Lin, CMP, 2010], if
limr→∞(u(r), v(r)) = (−∞,−∞), then the decay rate of (u, v)
may be slow so that eu and ev are not both in L1(R2).

Conjecture 1

Suppose limr→∞(u(r), v(r)) = (−∞,−∞). eu and ev ∈ L1(R2)
only when a, b > 0,



Strategy of the Proof of Theorem 1
The strategy of the proof of Theorem 1 is to split the nonlinear
terms in (5) into the linear combination of

f1 = eu − (1 + a)e2u + aeu+v

and
f2 = ev − (1 + b)e2v + beu+v .

(5) can be written as
{

∆u = −(1 + a)f1 + af2 + 4πN1δ0

∆v = −(1 + b)f2 + bf1 + 4πN2δ0

We want to show both f1 and f2 are positive. But we only can
show that f1 andf2 are positive for large r if (u, v) is not a
topological solution. Then we show that f1 and f2 ∈ L1(R2) for not
topological solution.



Strategy of the Proof of Theorem 1
The strategy of the proof of Theorem 1 is to split the nonlinear
terms in (5) into the linear combination of

f1 = eu − (1 + a)e2u + aeu+v

and
f2 = ev − (1 + b)e2v + beu+v .

(5) can be written as
{

∆u = −(1 + a)f1 + af2 + 4πN1δ0

∆v = −(1 + b)f2 + bf1 + 4πN2δ0

We want to show both f1 and f2 are positive. But we only can
show that f1 andf2 are positive for large r if (u, v) is not a
topological solution. Then we show that f1 and f2 ∈ L1(R2) for not
topological solution.

Conjecture 2

f1 and f2 > 0 for r > 0.



Remark 2
Recall

f1 = eu − (1 + a)e2u + aeu+v = eu − e2u + aeu(ev − eu)

We note that
f1(r) > 0

as long as u(r) < log 1
1+a

or u(r) < v(r) < 0.
Similarly,

f2(r) > 0

as long as

v(r) < log
1

1 + b
or v(r) < u(r) < 0.



Useful Tool: Pohozaev identity

r2
(b(1 + b)

2
u2r (r) + abur (r)vr (r) +

a(1 + a)

2
v2r (r)

)

− 4
(b(1 + b)

2
N2
1 + abN1N2 +

a(1 + a)

2
N2
2

)

=− (1 + a + b)r2F (r) + 2(1 + a + b)

∫ r

0
sF (s)ds

(7)

where
F (r) = (beu(r) − b(1+a)

2 e2u(r) + aev(r)− a(1+b)
2 e2v(r) + abe(u+v)(r)

)



Sketch of the Proof of Theorem 1

Step 1. u < 0 and v < 0 on (0,∞) unless u ≡ v ≡ 0 on (0,∞) .
Step 2.

Theorem 2
If (u, v) is not a topological solution, then there exists R0 > 0 such
that

fi > 0, i = 1, 2 for r > R0.

Step 3.

Theorem 3
(u, v) is a topological solution if and only if

(1 + 2b)ur (r) + (1 + 2a)vr (r) > 0 on (0,∞).



Sketch of the Proof of Theorem 1

Step 4 Using the Pohozaev identity, we show that f1 and
f2 ∈ L1(R2) for not topological solution (u, v). Thus,
limr→∞(u(r), v(r)) must be one of

(−∞,−∞), (log
1

1 + a
,−∞), (−∞, log

1

1 + b
),

and

ru(r)r = 2N1 +

∫ r

0

(

− (1 + a)f1(s) + af2(s)
)

sds

and

rv(r)r = 2N2 +

∫ r

0

(

− (1 + b)f2(s) + bf1(s)
)

sds

have limit as r → ∞.



Sketch of the Proof of Theorem 2
Theorem 2 If (u, v) is not a topological solution, then there exists
R0 > 0 such that

fi > 0, i = 1, 2 for r > R0.

In this theorem, we establish the apriori bound for not topological

solutions:
{

u(r) < log 1
1+a

if v(r) ≤ u(r)

v(r) < log 1
1+b

if u(r) ≤ v(r)
(8)

for r large.
If these hold, then

f1 = eu − (1 + a)e2u + eu+v > 0

and
f2 = ev − (1 + a)e2v + eu+v > 0

for r large.



Sketch of the Proof of Theorem 2

Step 1. We have the following local estimate.

u

v

u

v

1
u(r )

2
u(r )

Then u(r1), u(r2) < log 1
1+a

.



Sketch of the Proof of Theorem 2

Step 2 Suppose (u(r), v(r)) satisfies either

u(r0) ≥ v(r0), ur (r0) ≥ vr (r0) and (bu + (1 + a)v)r (r0) ≤ 0, (9)

or

v(r0) ≥ u(r0), vr (r0) ≥ ur (r0) and (av + (1+ b)u)r (r0) ≤ 0, (10)

then there exists R0 > r0, such that

{

u(r) < log 1
1+a

if v(r) ≤ u(r)

v(r) < log 1
1+b

if u(r) ≤ v(r)



Sketch of the Proof of Theorem 2

Step 3 Consider

r((1 + 2b)u + (1 + 2a)v)r (r) (11)

=2((1 + 2a)N1 + (1 + 2b)N2)− (1 + a + b)

∫ r

0
s(f1 + f2)ds,

(12)

we know that either

r((1 + 2b)u + (1 + 2a)v)r (r) > 0 for r ∈ (0,∞),

or there is r1 such that

r1((1+2b)u+(1+2a)v)r (r1) = 0 and ((1+2b)u+(1+2a)v)r > 0 on [0, r1)



Sketch of the Proof of Theorem 2

Step 4 For the second case, there are three possibilities on the
derivative of (u, v) at r1. (Here, we assume that u(r) > v(r) on
some interval (r1, r

∗
1 ) ):

(A) ur (r1) = vr (r1) = 0.

(B) ur (r1) = −
(

1+2a
1+2b

)

vr (r1) > 0.

(C) ur (r1) = −
(

1+2a
1+2b

)

vr (r1) < 0.



Sketch of the Proof of Theorem 2

Step 4 For the second case, there are three possibilities on the
derivative of (u, v) at r1. (Here, we assume that u(r) > v(r) on
some interval (r1, r

∗
1 ) ):

(A) ur (r1) = vr (r1) = 0.

(B) ur (r1) = −
(

1+2a
1+2b

)

vr (r1) > 0.

(C) ur (r1) = −
(

1+2a
1+2b

)

vr (r1) < 0.

Recall the condition (9)

u(r0) ≥ v(r0), ur (r0) ≥ vr (r0) and (bu + (1 + a)v)r (r0) ≤ 0



Sketch of the Proof of Theorem 3

Suppose (1 + 2b)ur (r) + (1 + 2a)vr (r) > 0 for r > 0
Step 1. We have the following local estimate

u

v

u

v

1
u(r )

2
u(r )

u(r1), u(r2) < log
1

1 + a
.



Sketch of the Proof of Theorem 3
Step 2. If u(r) and v(r) have infinitely many intersection points
on (0,∞). Then we have either

v(r) ≤ u(r) < log
1

1 + a

or

u(r) ≤ v(r) < log
1

1 + b

for r large. But it will get a contradiction.



Sketch of the Proof of Theorem 3
Step 2. If u(r) and v(r) have infinitely many intersection points
on (0,∞). Then we have either

v(r) ≤ u(r) < log
1

1 + a

or

u(r) ≤ v(r) < log
1

1 + b

for r large. But it will get a contradiction.
For convenience, let a = b = 1, integrating ∆(u + v) = −(f1 + f2),

r0(u + v)r (r0) >

∫ r

r0

s(f1 + f2)ds

=

∫ r

r0

s(eu − 2e2u + 2eu+v + ev − 2e2v )ds



Sketch of the Proof of Theorem 3
Step 2. If u(r) and v(r) have infinitely many intersection points
on (0,∞). Then we have either

v(r) ≤ u(r) < log
1

1 + a

or

u(r) ≤ v(r) < log
1

1 + b

for r large. But it will get a contradiction.
For convenience, let a = b = 1, integrating ∆(u + v) = −(f1 + f2),

r0(u + v)r (r0) >

∫ r

r0

s(f1 + f2)ds

=

∫ r

r0

s(eu − 2e2u + 2eu+v + ev − 2e2v )ds

> e(u+v)(r0)

∫ r

r0

sds



Sketch of the Proof of Theorem 3

Step 3. Suppose u > v for r > r0. We consider the following
possible cases:

◮ u oscillates on (r0,∞)

◮ u is decreasing for r large, which implies v is decreasing for r
large.

◮ u is increasing for r large.



Asymptotic Behaviors

Corollary 4

(1) If (u, v) is a topological solution, then (u, v) → (0, )
exponentially fast.



Asymptotic Behaviors

Corollary 4

(1) If (u, v) is a topological solution, then (u, v) → (0, )
exponentially fast.

Any topological solution (u, v) near infinity satisfies

(

∆u
∆v

)

+M

(

u
v

)

+ higher order terms of (u, v) =

(

0
0

)

, (13)

where M =

(

−(1 + a)2 − ab a(2 + a + b)
b(2 + a + b) −(1 + b)2 − ab

)

. Let

−λ1 < −λ2 < 0 be the eigenvalues of M. Then u and v decay as

fast as −r−
1
2 e−

√
λ2r .



Asymptotic Behaviors

(2) If (u(r), v(r)) is a non-topological solution, then

u(r) = −2β1 log r + O(1)

v(r) = −2β2 log r + O(1)

at ∞ for some β1 > 1 and β2 > 1. Thus,

eu , ev ∈ L1(R2).

Furthermore,

J(β1 − 1, β2 − 1)− J(N1 + 1,N2 + 1)

=(1 + a+ b)

∫ ∞

0
s
( (1 + a)b

2
e2u +

(1 + b)a

2
e2v − abe(u+v)

)

ds > 0

where

J(x , y) =
b(1 + b)

2
x2 + abxy +

a(1 + a)

2
y2.



β1 = 1

β2 = 1



β1 = 1

β2 = 1

Question 2: Is this a sufficient condition for the existence of
non-topological solutions subject to the boundary condition

u(r) = −2β1 log r + O(1),

v(r) = −2β2 log r + O(1),

as r → ∞?



β1 = 1

β2 = 1

For the case of A2, [Choe-Kim-Lin] use degree theory to show that
for (β1, β2) in the red region: S , there exists radial solutions
subject to

u(r) = −2β1 log r + O(1); v(r) = −2β2 log r + O(1) as r → ∞.

S ≡ {(α1, α2) | −2N1 − N2 − 3 < α2 − α1 < 2N2 + N1 + 3,

2α1 + α2 > N1 + 2N2 + 6, α1 + 2α2 > 2N1 + N2 + 6}.



Asymptotic Behaviors

(3) (u(r), v(r)) is a mixed-type solution, then either

u(r) → log
1

1 + a
and v(r) = −2β log r+O(1) for some β > 1,

or

v(r) → log
1

1 + b
and u(r) = −2β log r+O(1) for some β > 1,

as r → ∞.



Corollary 5

Suppose (u(r), v(r)) be an entire radial solution. Then u and v
have intersection finite times.



Existence of Mixed-type Solution and Uniqueness of

Topological Solution

We denote
(

u(r ;α1, α2), v(r ;α1, α2)
)

be a radial solution of (5)

with the initial value
{

u(r) = 2N1 log r + α1 + o(1)
v(r) = 2N2 log r + α2 + o(1)

as r → 0+. (14)

The region of initial data of the non-topological solutions of (5).

Ω = {(α1, α2)|(u(r ;α1, α2), v(r ;α1, α2))

is a non-topological solution of (5)}.
(15)



Theorem 6
Ω is an open set. Furthermore, if α = (α1, α2) ∈ ∂Ω, then
(u(r ;α), v(r ;α)) is either a topological solution or a mixed-type
solution.

Remark 3

◮ Ω 6= R
2

◮ For N1 = N2 and u = v , we know that Ω 6= ∅.

◮ By the existence result of [Choe-Kim-Lin, 2013], we know
Ω 6= ∅ for the case of A2. Hence, ∂Ω 6= ∅.



Topological Solution

α1

α2

Ω



Topological Solution

α1

α2

Ω

Remark 4
When N1 = N2 = 0, we have the uniqueness of topological
solutions.



Topological Solution

α1

α2

Ω

Remark 4
When N1 = N2 = 0, we have the uniqueness of topological
solutions.

Question 4: The structure of Ω: simply connected? ∂Ω?



Discussion

1. The existence results for this system:
Topological Non-Topological Mixed-type

[Yang,CMP,1997] 1. [Ao-Wei-Lin, preprint]:A2 and B2 N1 = N2 = 0
2. [ Choe-Kim -Lin,preprint ]
A2: for centain range of (β1, β2)



Discussion

1. The existence results for this system:
Topological Non-Topological Mixed-type

[Yang,CMP,1997] 1. [Ao-Wei-Lin, preprint]:A2 and B2 N1 = N2 = 0
2. [ Choe-Kim -Lin,preprint ]
A2: for centain range of (β1, β2)

2. The uniquness result for the system: When N1 = N2 = 0, there
is unique topological solution u(r) = v(r) = 0 for r ∈ [0,∞)



3. Classification of radial solutions of these cases:

◮ a, b > 0 doesn’t hold.

◮

K =



















2 −1 0
−1 2 −1
0 −1 2 −1

. . .
. . .

. . .

−1 2 −1

0 −1 2



















?

Here, K is SU(N + 1) Cartan matrix.



Thank you!



Lozano-Marqués-Moreno-Schaposnik Model

r∂rφ =
ǫ

N

(

f − f N
2−1

)

φ, r∂rφN =
ǫ

N

(

f + (N − 1)f N
2−1

)

φN ,

r∂r f =
1

4Nκ1

[

f0
(

(N − 1)φ2 + φ2
N

)

+ f N
2−1

0 (N − 1)(φ2 − φ2
N)

]

r∂r f
N2−1 =

1

4Nκ2

[

f0(φ
2 − φ2

N) + f N
2−1

0 (N − 1)(φ2 + (N − 1)φ2
N)

]

f0 =
ǫ

2κ1

(

(N − 1)φ2 + φ2
N − N

)

, f N
2−1

0 =
ǫ

2κ2
(φ2 − φ2

N),

(16)

where N is positive integer, ǫ = ±1, and κ1, κ2 > 0.



Gudnason Model

∆U =
α∗

M2

(

M
∑

i=1

[eU+ui + eU−ui − 2]
)(

M
∑

j=1

[eU+uj + eU−uj ]
)

+
α∗β∗

M

M
∑

i=1

(

eU+ui − eU−ui
)

+ 4π

M
∑

i=1

ni
∑

s=1

δpi ,s(x),

∆uj =
α∗β∗

M

(

M
∑

i=1

[eU+ui + eU−ui − 2]
)(

eU+uj − eU−uj
)

+ β2
∗(e

2U+2uj − e2U−2uj ) + 4π

nj
∑

s=1

δpj ,s(x), j = 1, · · · ,M,

(17)

where α∗ > 0 and β∗ > 0 are constant and {pj , s}
s=1,··· ,nj
j=1,··· ,M ∈ R

2.


