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Eugene Wigner (1956): Successive
energy levels of large nuclei have uni-
versal spacing statistics that can be
described by random matrices.

— a grand vision

Freeman Dyson (1962): A gas of
particles with a logarithmic
interaction reaches local equilibrium
very fast.

— a seminal idea



De Giorgi, Nash, Moser
(1957-60):

Regularity theory for
parabolic equations

Quantum Chaos conjecture (1977-84)
and
Anderson Model (1958)

Rudnick-Sarnak (1991) eigenfunctions on negative curved manifolds are

“flat” (Quantum unique ergodicity).



Experimental data for excitation spectra of heavy nuclei:

1& |

l Bﬂ l (] )

| iyl Al R

Yl nart At o Yo X

400 700 1000
ENERGY feV)

Wigner (1955): This pattern can be modeled by the spacing distri-
bution of eigenvalues of random matrices.

Perhaps I am now too courageous when I try to guess the dis-
tribution of the distances between successive levels (of energies
of heavy nuclei). Theoretically, the situation is quite simple if
one attacks the problem in a simpleminded fashion. The question
iIs simply what are the distances of the characteristic values of a
symmetric matrix with random coefficients. — E. Wigner



Gaussian Orthogonal Ensemble (GOE):
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hip = hi; (for 7 < k) are real independent normal random variables
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The eigenvalues A1 < Ao < ... < Ay are of order one.

Also, Hermitian or quaternion self-dual (GUE, GSE) ensemble: clas-
sical ensembles by Dyson’s classification.



Wigner ensembles: h;; are just independent (not necessarily normal)
distributions.

Wigner semicircle law: Density of eigenvalues

o(z) ~ /4 — z?
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Computation by Gaudin-Mehta and Dyson



By 1970 we had decided that random matrix theory was a beauti-
ful piece of pure mathematics having nothing to do with physics.

Random matrix theory went temporarily to sleep. — Dyson
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Nearest-neighbor spacing distribution for the “Nuclear Data Ensem-
ble" comprising 1726 spacings histogram (1983)



Is this exact computation for Gaussian models valid for general sys-
tems?

Fundamental belief of universality: Random matrix statistics are
a new class of universal laws for highly correlated systems.

A simple manifestation (Wigner-Dyson-Mehta conjecture) : If hij
are independent, then the local eigenvalue statistics are the same as
those of the Gaussian ensembles.

Only symmetry types of the ensembles matter.



Quantum Chaos and Anderson Model

Anderson (1958): V,, random potential on R? or Z¢.
H=-A+ \V,. Local eigenvalue statistics:
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Depending on A and d, there are two distinct regimes.
GOE in the delocalization regime (e.g., small A in 3 dimension)

Poisson statistics (Minami) in the localization regime (Frohlich-
Spencer, Aizenman).

Similarly for —A on a domain with chaotic classical dynamics.
Quantum Chaos conjecture: Bohigas-Giannoni-Schmit (1984)

For integrable dynamics: Berry-Tabor (1977)
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Quantum unique ergodicity conjecture AERE o
(QUE) [Rudnick-Sarnak]:
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for any large energy limit.

Quantum Ergodicity Theorem: Averaged version of QUE [Snirelman,
Colin de Verdiere, Zelditch] Anantharaman. Arithmetic QUE (Luo-
Sarnak, Bourgain, Lindenstrauss, Soundararajan)
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Question: Does QUE hold for Wigner matrices? Yes for GUE/GOE
because the eigenvectors are uniformly distributed on U(N)/O(N).

Quantum (unique) ergodicity/delocalization
<= random matrix statistics 7

Two basic mathematical questions:
1. Universality conjecture for Wigner matrices
2. QUE for Wigner matrices.

Key ingredient in solving these problems: Dyson Brownian motion.
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Generalized Wigner Ensembles

H = (hij)lgi,jSNv Eﬂ = h@J independent
2 C
Ehij = 0, E|hw| = Sij, ZSZ] =1, N < Sij <
()

If h;; are i.i.d. then it is called Wigner ensemble.

z|Q
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Solution to the Universality conjecture

Theorem [Erdos-Schlein-Y-Yin, 2009-2010] Local eigenvalue statis-
tics are universal for generalized Wigner ensembles. in the bulk (and
edge). Matrices with Bernoulli entries with varying variances are
included. Assumption on the distribution of matrix elements: 4 + ¢
moments are uniformly bounded.

[Tao-Vu, 2009-10] Wigner matrices with four moments matching
those of N(0,1). Hermitian case via combination with Johansson's
result.

Extensions to sparse matrices, fg-ensembles, single gap universality,
the edge universality [Bourgade, Erdos, Knowles, Yin]
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Theorem [Bourgade-Y, 2013] [Probabilistic local QUE]

uj,t = 1,...,N: normalized e-vectors of generalized Wigner matri-
ces. AN,.45 :independent normal distribution N(0,1).Then for any
7,k in the bulk and q a unit vector in RY, we have

V(I up)l Kol ) = (141, 1431 )

For any k in the bulk, the eigenvector u; is flat with high probability,
i.e., probabilistic local QUE holds.

There is € such that for any 6 > 0 and any k£ in the bulk and A C
[1,---,N] with |4] > N“¢ we have,

P ( Waz (N|uk(a)|2 - 1)‘ > 5) < CsN~¢.

Delocalization [Erdos-Schlein-Y]
Edge QUE for Wigner ensembles [Knowles-Yin].
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Matrix Dyson Brownian Motion (Matrix-DBM)

Evolve the matrix with a matrix Ornstein-Uhlenbeck process :

1 1
dHt —_— \/—NdBt — §tht

The distribution of Hy ~ e t/2Hy 4+ /1 — etV where V is a GOE.

05+ B
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Bz-j: symmetric independent Brownian motions
d B 1 1 1
dA\p = 4+ | — — —Ap | dt

Dyson Brownian Motion (1962) E-value equations are autonomous!

1 Uy dBkg 1 UL dt

duk T —
\/Ng_;k AL—X 2N ggg:k Ak — Ap)?

Dyson e-vector flow E-vector equations depend on the e-values.

18



VM\/

N\




Dyson: The classical Coulomb gas is invariant under the DBM:

_ A2 1
i i<j
prob. density for the classical ensembles with § = 1 for the GOE

Dyson’s conjecture: Time to “local equilibrium" for DBM is > N~ 1.

Erdos-Schlein-Y-Yin, 2009-10: Dyson conjecture holds for g > 0.
The Coulomb interactions drive the system locally very fast!
— Wigner-Dyson-Mehta conjecture holds for H; with t 2 N1
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Question: How to connect to t =07
Theorem* [Continuity of matrix-DBM]

F': function of matrix elements with uniformly bounded 3rd
derivatives. If t < N—1/2 then

EF (Ht> —EF (H()) —0

Proof: By Ito's formula and local semicircle laws.

* [Bourgade-Y 2013 (also a special case of Erdos-Knowles-Y-Yin)]
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Equilibration of DBM




[Bourgade-Y 2013] For any unit vector q fixed, define

£(t.9) = Ela- w;)PAC)|.

The eigenvector moment flow (in the rescaled time t — Nt)

N (k) = f(t )
of(t,j) = %s:j (A — Ap)2(D)

(non-local) Random walk in random environments with singular co-
efficients.

A very simple equation in the indices j.

There are analogues for higher moments.
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Theorem [Bourgade-Erdos-Y 2012-13] With high probability, for
any |i — j| < t,

[f( k) = f(& DI < CIfF)]loo t7°

e is a Holder regularity exponent from De Giorgi-Nash-Moser
(Caffarelli-Chan-Vasseur) theory!

= local QUE holds for Hy; |q-u;(t)]2 — N(0,1)2 .

How can one get Gaussian by “regularity"?

By continuity of matrix-DBM — local QUE holds for Hg.
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The mechanism underlying of the universality and QUE for random
matrices: Dyson Brownian motion (A dynamical idea)

Universality: Fast relaxation of DBM
+ continuity of matrix-DBM

QUE: Holder reqgularity of e-vector moment flow
+ continuity of matrix-DBM

e Dynamical idea to solve time independent problems: study the
limits of the flow as t — oo.

e Dyson Brownian Motion: study the initial layer to understand
t = 0.
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If you admit that the
Wigner ensemble gives a
completely wrong answer
for the level density, why
do you believe any of
the other predictions of
random-matrix theory?

George Uhlenbeck

e Local theory for universality was developed. A general theory ...
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