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pieces. We model the migration of cells by the Metropolis
algorithm and a proper definition of time scales. A cell in
isolation performs a random-walk-like movement while in
the neighborhood of other cells it tends to move into the
direction which minimizes the free energy. We quantify the
migration activity of a cell by its diffusion constant D in
isolation. We perform a number of successive migration and
orientation trials between two successive growth trials. The
trials are accepted with probability min(1,exp{−∆V/FT}.
FT is a parameter that controls the cell activity: it may be
compared to the thermal energy kBT in fluids (kB: Boltzman
constant, T : temperature). Together with the choice of step
sizes for growth, orientation change, and migration, our
algorithm mimics a multi-cellular configuration changing
with time. The step sizes are chosen in such a way, that the
simulation reflects a realistic growth scenario. (The details
of our model are explained in [8])
We recently used this single-cell based model to study
tumor spheroid growth in liquid suspension [8], which has
been extensively studied experimentally [21], [14] (for an
overview of tumor growth models, please see Ref. [8] and
references therein). Here, we study growing tumors in a
tissue-like medium composed of cells to analyze the influ-
ence of an embedding medium on the tumor morphology
(for a simulation example, see Fig. 1)

Fig. 1. Typical simulated tumor growth scenario. Red: embedding
cells, white: cells of the expanding clone. The embedding cells are
initially placed on the nodes of a square lattice and subsequently
relaxed before the growth of the embedded clone is started.

The embedding medium was modeled as non-dividing
cells with the same parameters as the dividing cell clone
with the following exceptions: (1) ”motX” within the name
of the dataset denotes that D → D/X with D being the
Diffusion constant mentioned above, (2) except of the dataset
”id100_mot1_adh” the embedding cells do not adhere.
The id-value refers to the initial distance of embedding cells
which is l for id100 and l = 1.2 (= 120/100) for id120.
For selected parameter sets, we have validated that the results
do not change if we replace the embedding cells by granular
particles with the same physical properties, but with only

passive movement (i.e., no capability to migrate actively).
Experiments to validate our findings can thus be easily
conducted in in-vitro studies with an experimental setting
similar to that in Ref. [10] by growing tumor spheroids in a
granular embedding medium.

IV. GEOMETRIC SHAPE PROPERTIES

A. Morphological Operators

All datasets were given as binary 3D images, which are
generally defined as the quadruple P = (Z3,m,n,B), where
every element of Z3 is a point (voxel) in P. The set B ⊆ Z3

is the image foreground, or the object, whereas Z3 \B is the
background. The neighborhood relation between the voxels
is given by m and n with m being the connectivity of object
voxels and n the connectivity of the background. To avoid
topological paradoxa, only the following combinations are
possible: (6,26), (26,6), (6,18) and (18,6) [15].

Morphological operators are well-known in image proces-
sing. Erosion and Dilation are in fact binary convolutions
with a mask describing the background-connectivity of a
voxel [11]. The Hit-Miss-Operator extracts specific features
of a binary image. For morphological Thinning, this operator
is used with a set of masks, where each mask is applied to
the original image, and all resulting images undergo a logical
OR-operation and will be subtracted from the original image
[15].

B. Distance Transform

The distance field of a binary digital image is a discrete
scalar field of the same size with the property, that each
value of the scalar field specifies the shortest distance of
the voxel to the boundary of the object. The signed distance
transform contains negative values for distances outside the
object. Distance transforms using the L1 or L∞ metrics can be
computed using Erosion for successive border generation and
labeling of the removed voxels until the object is completely
removed [11]. The computation of the Euclidean distance
transform is described in [19].

C. Medial Axis Transform and Skeletonization

In a continuous space, the medial axis of an object is the
set of points, which are the centers of maximally inscribed
spheres. A sphere is maximally inscribed, if it touches the
object boundary in at least two points, if it lies completely
within the object, and if there is no larger sphere with
the same properties. The skeleton of a binary object is a
compact representation of its geometry and shape. It is a
subset of the object with three properties [17]: (1) topological
equivalence, (2) thinness, and (3) central location within the
object. Topological equivalence implies that the medial axis
has the same number of connected components, enclosed
background regions and holes as the original object.

In discrete space, the medial axis can be approximated by
iterative Thinning as described in [15].



A public heath problem

• In 1971, U.S. President Richard Nixon, signed the The National

Cancer Act, called ’the war on cancer’

• 1500 Americans die every day from cancer

• since 2004, cancer is the first cause of mortality in France (34%

among men, 25% among women)

• In developed countries, cancer is the second cause of mortality

after hearth deseases



Many faces of the problem

• Solid and liquid tumors

• From molecules to entire organ

• Cell cycle/Circadian rhythms/Chronotherapeutics

• Angiogenesis (new vasculature brings nutrients)

• Immune system

• Resistance to treatment



Organisation of the talk

1. Cell density models

2. Free boundary problem

3. The Hele-Shaw asymptotics

4. Resistance and Darwinian evolution

5. Dynamic of Dirac concentrations



Models of cell densities
The purely mechanical model
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, x ∈ Rd, t ≥ 0,

v = −∇p(x, t), p(x, t) ≡ Π(n) := nγ, γ > 0.

Image based predictions : Swanson, Ayache, Colin-Iollo-Saut

Byrne, Chaplain, Benamar, Colin-Saut, Drasdo, Joanny-Prost-Jülicher...

’homeostatic pressure’



Models of cell densities
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Models of cell densities
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Models of cell densities

2. Active cells

3. Nutrients

4. Quiescent cells

5. Models of mixture, multiphase flows (L. Peziosi-A. Tosin...,
Titi-Lowengrub-Zhao)

5. Healthy cells

7. Extra-cellular matrix

8. Angiogenesis

Result of our method

• Simulation of second and 
third scans.

• Second and third scans.

Real case

System identification in tumour growth modeling Lyon, 9-10 avril

Simulations of 
the second 
and third scan

second and 
third scan

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Real case

System identification in tumour growth modeling Lyon, 9-10 avril
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Errors:
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Why?
1) We have only 2D partial information;
2) The model is approximated, not 
explicitly designed for a lung;
3) We do not have considered 
angiogenesis.
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• Real case;

• Conclusion;
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Credit for pictures : INRIA team MC2 (Bordeaux)



Models of cell densities

Effects of nutrients
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Free boundary models
Spatial domain Ω(t)

Compute the pressure as
{ −∆p = G(p) x ∈ Ω(t),

p = 0 on ∂Ω(t).

• Greenspan 1972,

• Lowengrub,..., Cristini, Nonlinearity 2010

• Roose, Maini, Chapman (SIAM review 2007),

• Friedman, DCDS(B) 2004



Free boundary models

Compute the pressure as
{ −∆p = G(p) x ∈ Ω(t),

p = 0 on ∂Ω(t).

and Darcy’s law

v(x, t) = −∇p(x, t).

The tumor grows with the normal velocity

Ẋ(t) = v
(
X(t), t)

)
, X(t) ∈ ∂Ω(t).

Often, surface tension is included with κ the mean curvature

p(x, t) = ηκ(x, t), on ∂Ω(t)



From cell densities to free boundary

How to relate these two approaches

cell densities and free boundary ?
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The Hele-Shaw limit is the limit γ →∞
Stiif equation of state

Benilan, Caffarelli-Friedman, Gil, Quiros, Vazquez...etc



From cell densities to free boundary
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Theorem (Hele-Shaw limit) : As γ →∞

nγ → n∞ ≤ 1, pγ → p∞ ≤ pM
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Remarks

1. There is a unique solution to the equation on n∞ (Crowley, Oleinik)

2. This is a weak formulation of the geometric problem

n

Π(n)



From cell densities to free boundary
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p∞ = 0 for n∞(x, t) < 1.

Let us define Ω(t) = {x s. t. p∞(x, t) > 0}. Then, we have

n∞(x, t) = 1 ∀x ∈ Ω(t),

p∞
[

∆p∞+G(p∞)
]

= 0,

Remark

1. However the equation on p∞ does not predict the set Ω(t)

2. Not an obstacle problem

3. There is a notion of viscosity solution (I. Kim)



From cell densities to free boundary

This establishes the standard Hele-Shaw problem when

n0(x) = 1I{Ω0}, Ω0 = { p0 > 0},
then for all times

n(x, t) = 1I{Ω(t)}, Ω(t) = { p(t) > 0},
and the equation on n∞ is equivalent to say that Ω(t) is moving

with the normal velocity v = −∇p∞, that is the free boundary

problem and



−∆p∞ = G

(
p∞

)
x ∈ Ω(t),

p∞ = 0 on ∂Ω(t).



From cell densities to free boundary

should be well defined for all t > 0. Notice that it coincides almost everywhere with the set
where %1 = 1; see Figure 1. Indeed, on the one hand, by the definition of the graph P1 we
have ⌦(t) ⇢ {x; %1(x, t) = 1}; on the other hand, if we had p1 = 0 and %1 = 1 in some
set with positive measure, then %1 would continue to grow (exponentially) there, which is
a contradiction. Therefore, ⌦(t) may be regarded as the tumor, while the regions where
0 < %1 < 1 (mushy regions, in the literature of phase-changes) correspond to precancer
cells.
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Figure 1: E↵ect of m large. A solution to the mechanical model (1.1), (1.3) in one dimension
with �(p) = 5(1 � p). Left: m = 5. Right: m = 40. The upper line is %; the bottom line is
p (scale enlarged for visibility). Notice that the density scales are not the same in the two
figures. The initial data is taken with compact support and the solution is displayed for a
time large enough (see Figure 2 below for and intermediate regime).

The complementarity formula (2.7) indicates that the limit pressure at time t, p1(t), should
solve the elliptic equation

(2.9) ��p1(t) = �(p1(t)) in ⌦(t), p1(t) 2 H1
0

�
⌦(t)

�
,

a problem which is wellposed if ⌦(t) is smooth enough, since p 7! �(p) is decreasing. This
implies in particular that in general regularity in time for the pressure is missing, since time
discontinuities may show up when two tumors meet; see Subsection A.2 in the Appendix.

Geometric motion vs. equation on the cell number density. To complete the
description of the limit problem we should be able to trace ⌦(t) starting from its initial
position. The pressure equation (2.6) suggests that we should have

@tp1 = |rp1|2 at @⌦(t),

which leads to a geometric motion with normal velocity V at the boundary of ⌦(t) given by

(2.10) V = |rp1|.

Thus we have arrived to a geometric Hele-Shaw type problem, which is the classical one
when � = 0.

The above formal computation is expected to be true if we prescribe a fixed initial pressure
pm(0) = p0 (which implies that the initial densities converge to the indicator function of

6

Left : γ = 5 Right : γ = 50
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From cell densities to free boundary
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Cell culture data in vitro at two different times. From N. Jagiella PhD thesis,

INRIA and UPMC (2012)



From cell densities to free boundary

Proof : Based on L∞, BV estimates and

∂

∂t
pγ − nγp′(nγ)∆pγ − |∇pγ|2 = nγp

′(nγ)G
(
pγ(x, t)

)

∂

∂t
pγ + |∇pγ|2 = γ pγ

[
∆pγ +G

(
pγ(x, t)

)]

Lefthandside is a bounded measure. Difficulties :

(i) Estimates on pγ do not give much on nγ.

(ii) |∇pγ|2 → |∇p∞|2 strongly



Resistance to therapy : Motivations

• 40% of cancers escape to therapy

• cells adapt and become resistance to drug(s)

• Tumor as an ecological system

http ://www.darevcan.univ-montp2.



Resistance to therapy : Motivations

Question 1. Heterogeneity Ecological models are compatible with

the ’competitive exclusion principle’

Question 2. Adaptive therapy ? Play competition to optimize

therapy



Resistance to therapy

∂

∂t
n(x, t) =

[ reproduction rate︷ ︸︸ ︷
r(x) −

competition, apoptosis︷ ︸︸ ︷
d(x)%(t) −

effect of drug︷ ︸︸ ︷
c(t)µ(x)

]
n(x, t)

%(t) =
∫
n(x, t)dx total number of cells

• x = genetic expression for a ’resistance phenotype’
• x = 0 high proliferation in a normal environment,
• x = 1 high resistance (lower reproduction without drug)

∂

∂t
n(x, t) =

[
r(x)

1 + cS(t)︸ ︷︷ ︸
cytostatic drug

− d(x)%(t)− cT (t)µ(x)︸ ︷︷ ︸
cytotoxic drug

]
n(x, t)



Resistance to therapy
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No therapy With Therapy

This is compatible with the competitive exclusion principle
for flow cytometry 30 h after transfection. Equal initial numbers of
sorted and untransfected cells were cocultured for !30 h at the
confluence of !70%. The methods for creating stable transfection
are described in Supporting Methods.

Quantitative Flow Cytometry and FACS. The mAb MRK-16, directed
against P-gp, was used in binding studies (a gift of T. Tsuruo,
University of Tokyo, Tokyo). Quantitative flow cytometry assays
were performed, following a slightly modified method of Ferrand
et al. (11). Fluorescein and red fluorescent tagged phycoerythrin
(PE)-conjugated goat anti-mouse Ab (Jackson ImmunoResearch)
was used for MRK-16 labeling. The FACS experiments were
performed with FACSVantage SE (Becton Dickinson). In the
study of functionality of P-gp transfer, Rhodamine 123 (Sigma) was
added to cells in the final concentration of 0.5 !g!ml, followed by
incubation at 37°C for 1 h. In addition, in some experiments, cells
were incubated with 100 !M verapamil for 6 h before Rhodamine
123 experiments. In all coincubation experiments, controls of
mixing cell lines just before the experiment and by using irrelevant
Abs were also performed.

RT-PCR. RT-PCR was performed by following the Noonan et al. (12)
protocol. For positive control to ensure the efficiency of RNA
extraction, "-actin specific sequence was amplified. A negative
control was achieved by application of an irrelevant RNA template,
pAW 109 (PerkinElmer). PCR was carried out in a GeneAmp PCR
System 9600 (PerkinElmer).

Confocal Microscopy. For microscopy, cells were collected by treat-
ment with trypsin, washed twice with PBS, and mounted on
microscope slides. Immediately after this procedure, cells were
imaged with a confocal Leica DM IBRE microscope. Digital
images were obtained with Leica TCS software and stored in TIFF
format.

Animal Experiments. Immunosuppressed BALB!c mice (20–25 g of
body weight) received s.c. injections of 107 cells to initiate xenograft
tumor growth. When tumors reached 15–20 mm [!2 weeks after
injection, the mice were killed by carbon dioxide inhalation and
tumors were excised for obtaining primary cell cultures by following
the standard protocol (see, for example, ref. 13)]. The isolated cells
(in suspension) were allowed to settle at the bottom of the flask and
grow for 1–2 days. After this step, the cells were collected and
quantitative fluorescence cytometry was performed as described.

Supporting Information. Further results are shown in Figs. 7–16,
which are published as supporting information on the PNAS web
site.

Results
Characterization of Intercellular P-gp Transfer. To investigate
whether coincubation of P-gp-positive cells with P-gp-negative cells
affects their P-gp content, we analyzed mixtures of human neuro-
blastoma BE (2)-C cells with their MDR counterparts selected for
resistance to colchicine. Two cell lines with intrinsic MDR: BE
(2)-C!CHC (0.2) (IC50 ! 100 ng!ml) and BE (2)-C!CHC (1) (IC50
" 375 ng!ml) were cocultured with the parental sensitive line at
equal proportions. Before the experiment, all of the intrinsically
resistant cell lines exhibited stable P-gp expression levels when
grown in the absence of any drug as a selection agent. P-gp
expression in cocultures was measured by quantitative fluorescence
cytometry using MRK-16 mAb and fluorescein-labeled secondary
Ab, allowing simultaneous analysis of several cell subpopulations
(Fig. 1a). Within several hours, the histogram peak of the sensitive
subpopulation shifted toward new higher fluorescence values,
reflecting an increased amount of P-gp and then continued to shift
much more slowly over a period of 2–3 days. (see Supporting
Methods for further quantification) A relatively stable position of

Fig. 1. Transfer of P-gp expression between resistant and sensitive variants
of the BE (2)-C human neuroblastoma cell line. (a) Evolution of P-gp transfer
with graphs showing histograms of a 50!50 mixture of sensitive and BE
(2)-C!CHC (0.2) cells measured at 0 (3 h), 2, 4, 6, and 8 days after coincubation.
MRK-16 Ab was used in a sandwich assay with fluorescein labeled secondary
Abs. (b) Dependence of the transferred P-gp expression on the P-gp levels in
resistant cells. Scatter histograms were obtained by gating cells according to
PE and GFP emission spectra. One day cocultures of sensitive cells with BE
(2)-C!CHC(0.2) (Left Lower) and BE (2)-C!CHC (1) (Right Lower) are compared
with controls of pure sensitive (Left Upper) and pure BE (2)-C!CHC (0.2) (Right
Upper) cells. (c) Coincidence of the AqMDR population (the first peak in the
mixed population histogram, gray; see text) with the population gated for
GFP expression (black). In these and all other experiments, medium was free
of colchicine. Coincubation was for 10 days with BE (2)-C!CHC(0.2) cells. A
control showing mixture of BE (2)-C!CHC (1) and BE (2)-C with no coincubation
is shown in Fig. 16.

1934 " www.pnas.org!cgi!doi!10.1073!pnas.0401851102 Levchenko et al.

Levchenko et al, PNAS 2005. In vitro. Expression of P-gp measured by fluorescence



Resistance to therapy

A simple explanation of this observation is after rescalling

ε
∂

∂t
nε(x, t) =

[
r(x)

1 + cS
− d(x)%ε(t)− cT µ(x)

]
nε(x, t) + ε2∆nε

nε(x, t) = e
uε(x,t)

ε

In the limit we obtain the ’Constrained Hamilton-Jacobi Equation’




∂

∂t
u =

r(x)

1 + cS
− d(x)%(t)− cT µ(x) +

∣∣∣∇u
∣∣∣
2

max
x

u(x, t) = 0



Resistance to therapy
Theorem

nε(x, t) −→
ε→0

%̄(t)δ
(
x− x̄(t)

)

and there is no easy chracterization of %̄(t), x̄(t)

max
x

u(x, t) = 0 = u(x̄(t), t)

Conclusion 1. Heterogeneity comes from spatial organization

Without therapy With therapy



Resistance to therapy
Conclusion 2. Optimal scheduling ?

constant cytotoxic, periodic cytostatic

constant cytostatic, periodic cytotoxic



Conlusions - Perspectives

• Very different questions from biology and medicine ; very different

mathematics

• Asymptotic analysis arises naturally because of the scales

• Many open mathematical questions

• Hele-Shaw asymptotics for systems of PDEs

• Interaction of space and Darwinian evolution



Thanks to my collaborators

F. Quiros, J.-L. Vazquez, M. Tang, N. Vauchelet

D. Drasdo, N. Jagiella, I. Chedaddi, I. Vignon-clementel

O. Diekmann, G. Barles, S. Mirrahimi, P. E. Souganidis

A. Escargueil, J. Clairambault, T. Lorenzi, A. Lorz


