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Mathematical aspects of tumor growth
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A public heath problem

e In 1971, U.S. President Richard Nixon, signed the The National
Cancer Act, called 'the war on cancer’

e 1500 Americans die every day from cancer

e since 2004, cancer is the first cause of mortality in France (34%
among men, 25% among women)

e In developed countries, cancer is the second cause of mortality
after hearth deseases



Many faces of the problem

e Solid and liquid tumors

e From molecules to entire organ

e Cell cycle/Circadian rhythms/Chronotherapeutics

e Angiogenesis (new vasculature brings nutrients)
e ImMmune system

e Resistance to treatment




Organisation of the talk

Cell density models
Free boundary problem
The Hele-Shaw asymptotics

Resistance and Darwinian evolution
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Dynamic of Dirac concentrations



The purely mechanical model
{ 9+ div<nv) - nG(p(w,t)), xR t >0,
v = —Vp(z,t), p(x,t) =MN(n) :=n", ~>0.

Image based predictions : Swanson, Ayache, Colin-Iollo-Saut

Byrne, Chaplain, Benamar, Colin-Saut, Drasdo, Joanny-Prost-Julicher...
"homeostatic pressure’



Models of cell densities

%n - div(nv) = nG(p(a:,t)), reRY t>0,
v = —Vp(z,t), p(x,t) =MN(n) :=n", ~>0.
Properties : e CMtn(x,t) € LfO(L%), p(x,t) < py

e_GMtan(a:, t)
8907;

c L°(LY),

o o 9
9050 = Zu)>0
o 20 = )2

No necrotic core (early stage)
Stable



Models of cell densities

%n -4 diV(nv) = nG(p(w,t)), reRY t>0,
v = —Vp(z,t), p(x,t) =MN(n) :=n", ~>0.
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Models of cell densities

2. Active cells
3. Nutrients
4. Quiescent cells

5. Models of mixture, multiphase flows (L. Peziosi-A. Tosin...,
Titi-Lowengrub-Zhao)

5. Healthy cells
7. Extra-cellular matrix

8. Angiogenesis
Credit for pictures : INRIA team MC2 (Bordeaux)



Models of cell densities

%n -+ diV(nv) = nG(p(x, t),c(x, t)>>

Effects of nutrients
%c — Ac+ R(n)c = ¢



Free boundary models

Spatial domain (%)

Compute the pressure as

—Ap = G(p) r € (1),
p=20 on 092(t).

e Greenspan 1972,
e Lowengrub,..., Cristini, Nonlinearity 2010
e Roose, Maini, Chapman (SIAM review 2007),

e Friedman, DCDS(B) 2004



Free boundary models

Compute the pressure as

—Ap = G(p) r € (1),
p=20 on 092(t).
and Darcy’s law

v(z,t) = —Vp(x,t).

The tumor grows with the normal velocity

X(t) = U<X(t),t)>, X(t) € 092(2).

Often, surface tension is included with  the mean curvature

p(x,t) = nr(x,t), on 02(t)



From cell densities to free boundary

How to relate these two approaches
cell densities and free boundary 7

{ fny +div(ngoy) = mG(py(a,t)), xR

vy = —Vpy(z,1), py(z,t) = M(ny) :=n7,

The Hele-Shaw limit is the limit v — oo
Stiif equation of state

Benilan, Caffarelli-Friedman, Gil, Quiros, Vazquez...etc



From cell densities to free boundary

{ Gy 4 div(nqyvy) = nyG (py (2, 1)), z € RY
vy = —Vpy(z, 1), py(z,t) = M(ny) :=n7,
Theorem (Hele-Shaw limit) : As v — o
M(n)
9o — div(noeVpoo) = 10sG (poo),
Poo =0 for neo(z,t)<1. |
Remarks n

1. There is a unique solution to the equation on ns (Crowley, Oleinik)

2. This is a weak formulation of the geometric problem



From cell densities to free boundary

%noo — div(noonoo> = nooG(poo>7
Po =0 for ne(z,t) < 1.

Let us define  Q(t) = {x s. t. poo(xz,t) > 0}. Then, we have

noo(x,t) =1 Va € Q(t),

Poo[ Apso + G(poo)] = 0,
Remark
1. However the equation on ps does not predict the set Q(t)

2. Not an obstacle problem
3. There is a notion of viscosity solution (I. Kim)



From cell densities to free boundary

This establishes the standard Hele-Shaw problem when

no(z) = Moy,  Q%={p">0},
then for all times

n(z,t) = Lo, 2(t) = { p(t) > 0},

and the equation on ns is equivalent to say that Q(¢) is moving

with the normal velocity v = —Vpso, that is the free boundary
problem and

—Apoc = G(poo) r € (1),
Poo = 0 ON 02(t).



From cell densities to free boundary

%noo — diV(noonoo> = nooG(poo),
Poo =0 for mneo(z,t) < 1.

In the region {0 < noo < 1}, poc = 0 and
0

n [


file:///Users/perthame/Ex-Powerbook/images_bio/talk_HeleShaw/Hele_Shaw_movie.gif

From cell densities to free boundary
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Cell culture data in vitro at two different times. From N. Jagiella PhD thesis,
INRIA and UPMC (2012)



From cell densities to free boundary

Proof : Based on L°°, BV estimates and

0

=Dy = 19 (1) Apy — [Vps|* = o/ (n)G (po (a2, 1))

0

o7 V0|2 =19y [ Bpy + G (py (1)) |

Lefthandside is a bounded measure. Difficulties :
(i) Estimates on py do not give much on ns.

(i) IVpy|? = | Vpool? strongly



Resistance to therapy : Motivations

e 40% of cancers escape to therapy

e cells adapt and become resistance to drug(s)

e Tumor as an ecological system

http ://www.darevcan.univ-montp?2.



Resistance to therapy : Motivations

Question 1. Heterogeneity Ecological models are compatible with
the '"competitive exclusion principle’

Question 2. Adaptive therapy 7 Play competition to optimize
therapy



Resistance to therapy

reproduction rate competition, apoptosis effect of drug
a 7\ A\ A\

Sn@n=] @ - W@ - {On@ |0

o(t) = /n(a:,t)dac total number of cells

e r — genetic expression for a 'resistance phenotype’
e r — 0 high proliferation in a normal environment,
e x = 1 high resistance (lower reproduction without drug)



Resistance to therapy

reproduction rate competitiog, apoptosis effect Qf drug

Sn@o=[ @ - A@e® - @@ |nln
o(t) = /n(a:,t)dac total number of cells

e r — genetic expression for a 'resistance phenotype’
e r — 0 high proliferation in a normal environment,
e x = 1 high resistance (lower reproduction without drug)

r(z)
1+es@®)

cytostz;’Eic drug

%n(x,t) — — d(x)o(t) — \CT(t)/J(CC)/ ] n(z,t)

cytoto;(ic drug
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No therapy With Therapy

This is compatible with the competitive exclusion principle

Levchenko et al, PNAS 2005. In vitro. Expression of P-gp measured by fluorescence



Resistance to therapy

A simple explanation of this observation is after rescalling

0 [ r(x)
o @) = [1 T cq

~ d@)o=(t) — ep p(@) | ne(a,t) +2An.
ue(x,t)
ne(x,t) = e ¢
In the limit we obtain the 'Constrained Hamilton-Jacobi Equation’

(0 r(x) 2
00" T 1 es d(z)o(t) — cp px) + \Vu|

max u(x,t) =0

\



Resistance to therapy

Theorem
ne(z,t) — 5(75)5(:1: - zE(t))
e—0
and there is no easy chracterization of po(t), z(t)

max u(x,t) = 0= u(x(t),t)
Conclusion 1. Heterogeneity comes from spatial organization

Without therapy With therapy



Resistance to therapy

Conclusion 2 Optlmal schedullng ?

J e, ) d nd Je > d

== ‘ | § cerney i

“ | | , | | | ‘ - o o

constant cytotoxic, periodic cytostatic

Jo,dlrd dr and J o (o) dr

constant cytostatic, periodic cytotoxic



Conlusions - Perspectives

e Very different questions from biology and medicine ; very different
mathematics

e Asymptotic analysis arises naturally because of the scales
e Many open mathematical questions

e Hele-Shaw asymptotics for systems of PDEs

e Interaction of space and Darwinian evolution
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