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1. Introduc

Current numerical methods can be
roughly classified as

e Body-fitted solver

- Conventional methods; strong co
tedious mesh generation

e Sharp interface non-body-fitted so

- Cartesian meshj; Cut-cell, Ghost fluid,
Immersed interface method; loose coup
tedious treatment at boundary

¢ Diffuse interface non-body-fitted solve

- Cartesian mesh; Immersed boundary meth
decoupling; equal treatment for simple and
complex geometry



2. Conven al Immersed Boundary

Method (IBM)

¢ Proposed by C. S. Peski 1972 to
study fluid dynamics of he

valves (2D model)

¢ Effect of boundary to surroundin
fluids is through the body force



idea of IBM:
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Boundary force density at Lagrangian points




Calculation
Hooke’s law (Peskin 1972, JCP):

F(X,0)=—kAE = —k(V ,,, ML=V, At)

f(xt)=> F(X YD (x — X )As

Idea is simple;
Needs a user-specified parameter



Direct forcing thod (Fadlun et al 2000, JCP):

ou
f(x= X(S,t),t):pL—+u-VuJ+Vp—,uAu
ot
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f(X,1)= mz f (X (s,,2),6)D (X~ X (s,,£)) Ash

j=1

Needs to compute derivatives and int
Improved Version (Predictor-Corrector Sc
Predictor: Get u* from

([ ou )
pL—+u-VuJ+Vp—,uAu
ot

Corrector: compute f from

uwall - u*
f(x=X(s,2),t)=p
At




Momentum exchange equals to impulse



Insight of IBM:

Fluid points ,: :
domain 7-“

N

o :
,\r- ~ Boundary point |

\
Physical View
(Momentum flux at a surface would ‘affect

velocity in a control cell)




Computationa quence:

¢ Eulerian points for flow field while
Lagrangian points for ndary;

e Solve N-S equations with body
force f£;

e Compute the force at bounda
(Lagrangian points);

¢ Distribute the boundary force to
surrounding fluid points;

¢ Re-solve N-S equations with body
force;

e Carry on computation until
convergence is reached.



Features of IB

e Very simple implementation;

¢ Iterative procedure to satisfy both
governing equations and b
conditions;

e Boundary conditions are
approximately satisfied;

e Streamlines may penetrate the so
boundary;

e Calculation of forces is not accurat

e Use of d-function just has 15t order o
accuracy near boundary.
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Simulation of Flow past a Circular Cylinder by IBM, Re



dition-enforced IBM

3. Boundary

Shu, Liu & Chew (JC
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Introduction of body force is equivalent to
make velocity correction
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u""'=u +At-f =u +u' (f onlya

1 & * '
" V +At-fy v +v (f, only affec

<
I

Conventional IBM:
f calculated = u’, v’ fixed = y*1, v**1 not satisfy B. C.




Boundary of A Body

/

Int lati ~
nierpoiation:
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A MA+Ax (”B MA) / X

Cartesian Mesh

u, and ug are fluid velocity
Cartesian mesh lines,

immersed boundary and
Requirement: their intersection points

u, + u’ satisfies B. C.




T

Velocity correction:

: A,
L :qu_uA_A_(uB_uA)
X

Uy, — vVelocity at boundary

Linear velocity distrib
u’ is applied at A and B between two mesh poi

Flow field can be obtained by Navier-Stoke
solver or Lattice Boltzmann solver




Features of Scheme:

Non-slip boundary conditi
accurately satisfied

No 5-function is involved

Need to get intersection points bet
boundary and mesh lines

Force calculation is from velocity
correction



Re = 20




Simulation of Fi

Physical Model
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Mathematical Model

y (x,t)=a (x)cos(2zx/A -2 ft)

f: frequency A: wavelength

Amplitude can be approximated by a polynomial with curve fitting




The mesh line- ndary crossing points
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The strea es for (U-U,, V) for the

s |C SN |
- Re=500 f=2.0 A=0.87
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Extension-of ldea of Boundarv Conditi

Enforcement to Conventional IBM
Wu and Shu (JCP, 2009, 3(}10)

Fluid points
domain

\

|
? .
,\;' ~ Boundary point

\
Information exchange is théugh o-function interpolation




As an example, use lattice Boltzmann
method as a solve r flow field

Velocity correction

Can properly consider the discrete lattice
effects to the density and momentum




‘ ou is related to the force density‘
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Features of |

® Easy Application (s
conventional IBM)

® Accurate satisfaction of n
boundary condition

® Easy and accurate calculation
of force (directly from velocity
correction on the boundary)



- Boundary conditio
Conventional IBM enforced IBM

Re =40



Unsteady Flows around a moving body
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Sedimentation of two particles in a channel
at different time stages



Transverse coordinate of particle centers, Xp (cm)
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Steady axisymmetric flow past a sphere
Re =100

Cd =1.13 (present), 1.10 (Johnson et al.)



Simulation 3D Fish Motion

® 1 i

St=0.3 drag type St=0.7 thrust type
Karman vortex street Reverse Karman vortex s



St=0.3 St=0.7
Single row wake Double row wak




| model

SiCa
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3D dragontly



h=h,sin(2r ft)
0 =0,sin(2x ft+y)




Free falling of an ellipse












4. Some Re t Progresses
4.1 Extension to Th

Ren et al (C&F, 2

al Flow Problems

e Velocity field is treated usi
same way as shown early on

e Energy equation is solved by a
heat source term

oT )
pc, (—+(ueV)T)=kV'T +4q
Ot v\

Heat source/sin

q(x,1) = jQ(X(S),f)5(X — X(s,1))ds




ional way to evaluate Heat
Source ter

- Directly from conventional IBM
E.g. from direct cing scheme

oT ,
g=pc (—+(ueV)T)-kV-'T
P ot

Applied at bo
Wall temperature

n+1 TBn+1_Tn n+1 n 20
g =pc,( A +(u " eV)T)-kV'T
t

- Tedious
- q is pre-calculated

- Satisfying of boundary condition is
not guaranteed



Boundary
energy equatio

- Predictor step
oT *

ot
- Corrector step

T _, mmmp e, =
2 pe,—=4q
pcp 5 q p 5t

pc, ( +(ueV)T*)=kV°T*

St St

ST = g = jQ(X(s),r)a(x—X(s,t))ds
pc, pC, 1

5T(xl.j,t) =

yo,

ot
- > 0,(X,.1)D, (x, - X, )As,
p [

dition-enforced IBM for

QT*

with 6T =T7"" T







T, (X,.t)=>T" (x,.t)D,(x, - X, )AxAy

i,

— o ZzQB(X;’t)Dij(Xz‘j_X;)ASIDU(XU‘_X;)AXAy
PC, i
AX =B
X=10,.0,".0,|

Solution of system gives heat flux at boundary poin




in a concentric isothermal
uare outer cylinder and
cylinder

Natural convec
annulus between a
a circular inn

L/1(2r)=25



Streamlines



of IB-LBM for Neumann
boundary conditi

Shu et al (IJN

or . .
— is given or _ )
on Oy

¢ Very little work on this part
¢ Possible reason: Delta function

not be appropriate for derivative
approximation at boundary points

¢ Use energy equation to illustrate
method



Recall ea work

oT .
pcp(a—+(u0V)T):kV T +q
4
N

q(x,t) = IQB(X(S)JW(X — X(s,1))ds

Predictor step:

*

pe ( +(ueV)T*)=kV°T*

ot

but -2 (X)=0,(X)

on

Their difference will contribute to 0, to affect
surrounding temperature field




A section of
the
boundary

Control

Lacrangian

(Boundary)
point
. . oT"
At each direction: 0, (X)+ka—(X)
n

Both directions contribute to flow field in a control volu




T

q(x,1) = [ 50, (X(s),1)8 (x = X(s,1))ds

N\

Corrector step: oT (x,1) = g (x,1)
Y ot
ST (x,t) _ - «
pc, =q(x,t) with 7" (x,¢)=T (x,t)+T(x,¢t)

ot

Temperature at boundary point is
obtained by delta function interpolatio




Natural convection in a concentric cylindrical
annulus between an outer isothermal cylinder
and an inner /soffux cylinder




Isotherms

Streamlines

Ra =5700



Comparison of local temperature distribution o
Inner cylinder surface



to simulate multiphase
flows by phase field IB-LBM

% .v.(puy=0  Shao,Shu,Chew (JCP, 2012)

ot

o(pu

(P )+V-(puu):—V~P+yV2u+Fb

Ot

%,

—¢+UV¢:MVZIIJ¢ (C-H Equ
ot

2 Neumann conditions for C-H equation:
kn-(Vg) = —a;1

n-(Va,), =0

2 distribution functions used for flow and phase fields



A solid particle moves up from water



M

Interaction of moving particles
with slug flows




Simulation of wave-current interaction in a tan



4.3 Extensio i 1

Inviscid flows




IBM results



IBM resulit

Body-fitted re

M=2.0, angle of attack = 20°






lementation of no-slip
condition with 2"9 order of accuracy

A1l

Interpolation from boundary point to both side



LB Model of Zheng & Shi (PRE, 2002)

ou = Zeafa

. 1
pou’ = pu + —fAt¢
2

(o -w)

At

f=2p

Velocity correction and force
calculation are only applied at
boundary-dependent points



Along horizon mesh lines:

c ('xA_xAl)('xA_xBl) (xA_xp)(xA_xBl) (xA_xAl)(xA_xp)
u, = u_ + U, + U,
xp_xAl)(xp_'xBl) ’ (xAl_xp)(xAl_xBl) (xBl_xAl)(xBl_xp)
N
c (xA_xAl)(xA_xBl) (xA_xp)(xA_xBl) (xA_xAl)(xA_xp)
v, = vV + vVt Vo
('xp_'xAl)('xp_'xBl) ’ (xAl_xp)('xAl_xBl) (xBl_xAl)(xBl_xp)
Along vertical mesh lines:
o _ (yD—yc1)(yD—yD1)u N (75 =2,) (75 = 751) )
i (yq_yC1)(yq_yDl) : (yc1_yq)(y01_y01) -
y :(yD_yC1)(yD_yDl)v +(yD_yq)(yD_yD1)v

(v, =vc) (7, = v01) " (ver=2,)Ver—Yor)
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Accuracy study for decaying vortex problem



3D Fish Motion



e Boundary condition-enforced IBM
can accurately satis boundary
conditions; No flow pen
the solid boundary;

e Force and heat transfer rate
easily calculated;

e It has a great potential for
applications (keep advantages o
IBM but provide more accurate
results)

http://[serve.me.nus.edu.sg/shuchang
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