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Abstract climate models

dX .
- = FX+oXnw, X ceRN, F=(F, -, Fn),
XeRV W eRM oe MNM (N> 1)

- Lorenz 63 and 96 atmospheric models with noise

- Barotropic model (2D NS system and related systems)
spatially discretized with noise

- Primitive equation systems (Atmospheric GCMs) spatially
discretized with noise

* source of noise: stochastic parametrizations (back-scattering
from unresolved processes), rounding errors, ...



Climate and Climate Change

¢ Climate is the long time statistics of the system (distribution
of the "weather”): invariant measure

e Bogliubov-Krylov Theorem: There is (at least one) invariant
measure (equilibrium PDF) for most systems. In typical cases
there is " physical” (or Sinai-Ruelle-Bowen or SRB) measure
on the attractor.
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Climate and Climate Change

Climate is the long time statistics of the system (distribution
of the "weather”): invariant measure

Bogliubov-Krylov Theorem: There is (at least one) invariant
measure (equilibrium PDF) for most systems. In typical cases
there is " physical” (or Sinai-Ruelle-Bowen or SRB) measure
on the attractor.

Climate change is their response to change in parameters of
dynamics
potential challenge using direct approach
o development of fast and accurate numerical scheme for climate
e large system + small time step + long time integration (some
notable recent progress)
e governing equations may not be known although observations
may be available



Long time statistics

e X = F(X), with solution X(t), climate (invariant measure) 1
e functional A(X)

1 t
(AX)) = LIV, o /0 A(X(s))ds

statistical equilibrium

e Birkhoff's Theorem: Time-averaging and spatial-averaging are
equivalent for ergodic system (ergodic invariant measure)

1 t
LIMesoc /0 A(X(s))ds = (A) = /H A(X)dpu(X), a.s.

(essentially independent of the initial data)



Response operator

Perturbed climate model X = F(X) + &f, solution X!, new
climate p!

statistics of the perturbed system

t
(A(XY)) = LIMHOO% / A(X!(s))ds = / A(X)dut(X)
0 H
Changes in long time statistics and the response operator
3(A) = (AX)) — (A(X)) = M(5f)

For small §f, the response operator M can be expected to be
linear



Direct approach to compute the (linear)
response operator M

e Precise formula, distributed at statistical equilibrium
5 < A> (0f) =< AXL(6F)) > — < A(X) >
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Direct approach to compute the (linear)
response operator M

e Precise formula, distributed at statistical equilibrium
5 < A> (0f) =< AXL(6F)) > — < A(X) >

o f,, Adyit)(57)
T ] of
6f=0

B _ [o() Adp*)(5f)
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< AXY) > (6F) =< A(X) > +

e Not particularly useful



Fluctuation-Dissipation Theorem

dissipation and fluctuation of a given system are related

System response to an external perturbation may be expressed
in terms of the fluctuation properties of the system in thermal
equilibrium

applies to large system of identical particles (Green-Kubo)
among others

application to climate system proposed by Leith (1975)



FDT theory applied to climate systems

M(t)=/0t<R(T)>dT ((AXH (1)) = (A(X)) = M(t)éf)

M = M(o0) = /OOO<R(T)>dT

e For Gaussian equilibrium: pe(X) = c exp(—(C~1(0)X, X))

M(t) = /Ot<A(X(s +7))X(s)"YC7L(0)dT



Brownian motion

m

equilibrium distribution

E

instein’s relation

with friction
du n dW dx J
— = —m _— =
dt TG e

2 2

mu
p(u) = CeXP[_ﬁ]a kT = m

diffusion coefficient

D =

lim
t—o00

1
S (Ix(0) = x

(0

g

)I?)

~ im 1/tdt1 T () u(t + 9))

0 0
0o 0.2
Einstein’s relation (dissipation-fluctuation relation)
1 D 1 oo
n = ; = ﬁ = ﬁ A <U(t0)u(t0 + t))dt



Linear response theory

du dW dx
m— = —m7u+aW + K(t)’ﬁ = u, K(t) = Ko coswt

e long time linear response

u(t)) = Ru(w)Koexp(iwt)
1 1

wlw) = i (mobility, admittance)
[ )
©) = o [ (el + D)t
mw) = m<u2> ; 0 0
1 > —iwt
= %7/, (u(to)u(to + t))e "“tdt
> _i (u?)
to)u(ty + t))e "“idt = -
| tuto)uteo + e L



Abramov & Majda, J. Atmos. Sci., 2009

e “A new algorithm for low frequency climate response”

e T21 barotropic climate model on a sphere with realistic Earth
topography, 500 mbar regime (Selten 1995)

e Able to predict response at four leading EOFs for both mean
state and variance with blended ST/qG response
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Abramov & Majda, JPO 2011

“Low Frequency Climate Response of Quasigeostrophic
Wind-Driven Ocean Circulation”

1.5-layer quasigeostrophic model with wind stress (McCalpin
& Haidvogel, JPO 1996)

Flow with boundary layer separation like Gulf Stream or
Kuroshio

e Four leading EOFs have both jet and meandering patterns



Response
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Gritsun & Dymnikov & Branstator, 2002,
Gritsun & Branstator & Majda 2008

NCAR atmospheric GCM CCMO (R15, 9 levels, state of the art
1980)

e Data: 4 Million days, perpetual January.

e Response operators constructed for A =< 1) >, < ¢? >, <
(¥")? >, < precip >,< V- ii >, < u'v > (...) band passed
(1-14days) component

M= / < AQu(t +)u(®)T > CL(0)dr
0



Typical dimension reduction for AGCM (CCMO)
9 pressure levels, R15 resolution, independent variables are psi, div,
T, Ps, q.
1) Use only T and Psi from all pressure levels.
2) Calculate EOF for each data field. Project T and Psi onto 300
(T) and 100 (Psi) leading EOFs. Operator dimension goes to
3600 (from 20000).

3) Calculate 3D EOFS of the 3600- component vector. Project
data onto 2000 leading 3D EQFs.

4) Calculate covariances in the space of 2000 leading 3D EOFs.



Figure: of Figure: 6 < ¢ >

GCM +46f =0 < >

Can FDT predict this response?
Méf




Figure: CCMO (left) and FDT operator Mdf (right) responses to 2
equator heating anomalies (Psi336).



Figure: AGCM Figure: FDT

Response of the streamfunction, high frequency variance and
meridional momentum flux onto the heating at (165W,0N),
sigma=336, ¥100(top), Varwfgo(middle),uggo vé’é’o(bottom).



Set-up of the problem with seasonal
impact
e Generic finite dimensional (random) dynamical system
(climate model)
dX
dt
XeRV, W eRM g e MVM (N> 1)
¢ Fokker-Planck equation

= FX,t)+o(X,t)W, Xe RN, F=(F, -, Fp),

op 1 e _

87’; _ _v.(pF)+§v-V-(Qﬁ)(:dszFpp),
(X, t) = Po(X).

t=0

Q=o00T >0, Q€ MNXN,

e Fokker-Planck equation reduces to Liouville equation if
oc=0.

e Example (seasonal cycle of solar heating):
F(X t)=F(X)Lf(t) (X t) = 5(X)



Issues

Is the climate (distribution of the weather) unique?

How does the climate change under perturbation?

Is there any easy way to compute/estimate the change of
statistical quantities (mean temperature) due to perturbation
to the system the initial data, forcing, or noise (po, F, o) via
past history of the system?

Stationary forcing case is known (unique ergordicity,
Green-Kubo formula, ...)



e Uniqueness of invariant measure: Vishik, Fursikov, Flandoli,
Maslov, Kuksin, Shirikyan, Da Prato, Zabzcyk, Debussche,
Mattingly, E, Sinai, Msmoudi, Young, Hairer, Liu, Ekmann, ....

e Fluctuation-dissipation theory applied to climate: Leith, Bell,
Dymnikov, Gritsun, Branstator, Franzke, Majda, Abramov, ....



Skew product

e Assume F, o periodic in t with period Ty

dX .
D F(X>S)+U(X)W>
dt
fo!
d% = 1,s€S'=R!/modTy
e Alternative form
dX o T
— = FX)+e(X)w, X e RN x §1,

e Skew-product FPE

b _ o _op 1 2 (-4 1

¢ = VI (BF(X,s)) = oo+ V-V (QP)= L
p(X, t) = Po(X) x do(s)

t=0




PDF relationship

e p(X,t): solution of the time-dependent FPE =
P(X, t) = p(X, t) X do(s — t)

is a solution to the skew-product FPE
e p(X,t): smooth solution of the skew-product FPE =

is a solution to the time-dependent FPE
e p(X): equilibrium solution of the skew-product FPE =

t

poerx.8) “ Top5(( 7))

is a time periodic solution to the time-dependent FPE with
period Ty.



e Comparison

original formulation skew-product
non-stationary stationary
full rank noise degenerate noise
smooth pdf singular pdf

e Strategy for linear response/FDT theory for time periodic
system: use skew-product system but need to deal with
singular pdf and time shift (phase)



Time periodic climate

Fact(Majda&W.2010): Dissipative system possesses at least
one time periodic statistical solution pper which is associated
with a statistical equilibrium p¢? of the skew-product system
Fact(Majda&W.2010): Dissipative system + generic noise
(rank(Q) = N), then ppe, captures all asymptotic statistical
properties of the original system in the sense that for any
statistical solution p

t'i{gop(p(t)v pper(t)) = tE}no]oP(pper(t)a p(t)) = 0.

P(p1, p2) :/Pl(x)ln p1X)

dX
p2(X)
Fact(Majda&W.2010):

K
. 1
/Cb(x)pper(x, s0) dx = Klinoo " kZ:l ®(X(sp + kTp)), a.s.

Prototype dissipative system
AYX



Perturbed system
e Perturbed system

% = F(X, t) +a(X) e JE(t) + (0(X) + 05(X)) W,

a e w: Hadamard (or Schur, or entrywise) product
(aew)j = ajw;.

e perturbed FPE

o _ SF) 4 L 50y _ O’ 5
o —V'(PF)+§V'V‘(QP) Ds oV e (a(X)p")
2 ~ 5
—i—%V-V-(Qﬁ5)+§V~V~((J&T+&JT)/35),
P2(X,0) = B = po(X) x do(s) + dph(X) x do(s),

Q =575, dp): initial errors in mean, variance, etc.



linear response calculation
e Assume
P’ =B+ 6p + O(5?).
e Approximate Linear Response Dynamics (sensitivity)

ai\), N aﬁ/ 1 A/
s —V'(PF)—E'i‘iV'V‘(QP)
. 1 _
~Ve(a(X)p) - F(t) + 5V V- (067 +507)p)
' Lepp +Lap - F + Lop,
p = pp(X) x do(s).
t=0

1
L.p=—Ve(ap), L,p= EV V-((c6T +607)p).
e perturbative pdf

. t R _ . t A _
p(t) =€ py+ /0 [t DLy p(r)] F(r) dr+ /O et L, p(r).



Perturbation in statistics

o Statistics A(X)

A~

ES(A)(t) = /A(x, )P’ (X, t) dX = E® + 6E' + O(8?)

SE'(t) = 5/A(X, t)p'(X, t) dX

p = pG(x)zzfleXP(—ﬁE(x))v
=[x

= "change in temperature”



Perturbation in stat:ll

E(A)r) % / B!t A%) d3

t
+/ Raa(t,7) - F(T) dT+/ Ry a(t, T)dT.
0 0

A

R’a,A(t,T) = /L;-[e(t_T)[ZPA()A()][X)()A(,T)dX

Roa(t.7) / (LT =TI AR)]B(R, 7) d

e Fast decay of the correlation functions needed for FDT
approach be applicable



Correlation representation of linear

response

e Fact(Majda&W.2010): assume smooth positive p

7)) = < AX(1)Ba(X(7)) >,

) = < AX(1)Bs(X(7)) >,
LebX7) g (%) = LoPXT)

p(X,7) p(X,7)

o Fact(Majda&W.2010): assume smooth positive p
(B(X. £) = (X, t) x do(5 — 1))

< A(X(t))Ba(X(7)) >
< AX(t))B,(X(7)) >

Lop(X,T)

BT = Bk



Special cases
Perturbation away from equilibrium Lgpp =0,

Rag(t.r) = <AX(£)BX(r)) >= Ras(t - 7,0)
T+To
= lim = A(X(s+t—7))B(X(s)) ds
T—oo T To
p is Gaussian and external forcing perturbation only
a(x) = a,F(t) = F, change in mean (A(x) = x)

B.p = linear function in x

Rag :~ /x(t) ® x(7)p(x, 7) dx
Combination of the two
Rag(t,0) :~ auto-correlation

Fluctuation-Dissipation interpretation: for stationary solution

: o odv _ _dw
to Langevin equation  +yv = 0%

o
— Y o via-t]
< v(t2)v(ty) > e



Zero Noise Van Kampen Adjoint Form,
initial data

e SDE = ODE, adjoint FPE = linear transport equation



Zero Noise Tangent map approach
et AR) = AX(%, t — 7))

e Linear response operator

Raa(t,m) = RT(t,7)

_ /R SleA(X(< - ) ,t—T)).a(x),S(< - > 7) ds dx.

e Tangent map
VxX(%, t' + t)

t'tt def
= exp(/ VxF(X,7) A
t/

dr)ViX(%, t')(= T

0 VaX(&
X=X(%,7)




e Case p=p x do(s — t), A(X) = A(X)
aA (t,7) /V A(X — 7)) ®a(x)p(x, 7) dx

X;(x,t —7): X component of )A((< : ) Jt—T)

e Case ensemble prediction

ij (X = X;( ij—l

R
T) = Z piVxA(X-(x,t — 7)) ® a(x)
j=1

x=x;(7)



Quasi-Gaussian Approximation

e Approximate p via a Gaussian p®(X, t) with the same mean
(X(t)) and second moments (covariance matrix C)
e Approximate the linear response operators

(Rea)T(6,7) = < AX(t)BS(X(7)) >,
Rea(t:T) = < AX(1)Bs(X(r)) >,
Lap®(X.7) g _ Lop®(X,7)
pox.r) DT ey

e Ensemble approximation

BS(X,7) =

R
Ralem) = 3 pACKIOBT ()

Roalt,T) = ij £)) By (X;(7))-

e Short time accuracy for Imear functional

-~ N —



e special functionals

e Linear response operator (around statistical equilibrium)

Rala(t) < A(X())Ba(X(0)) >

N A

_ / /AX ) Ba(X(0))p%(%) ds dx
RN St
TO,.. n
=3 / X(t, 5, )5 + £)Ba(x, $)pper (. 5) o
RN



Computational Algorithm 1

(2 —1)To
Sj - T,l

Q

2 a()
LZ/ EA(X(t ) Sjy X W(%‘Ft)é(x sj) dx

%

1 L K
722 X(t,57,%(5j + kTo))u(s; + t + kTo) Ba(x(s; +
Jj=1 k=1

. . . Heq N\ Lapper(X,s))
e Direct FDT algorithm: N < 4, B;%(x,s;) = mc
e Quasi-Gaussian algorithm: N > 1, BaG’eq(XaSj) = s

Pger(xﬁsj)




%

&Q

Computational Algorithm 2: zero noise

RIa(t)

/]RN SIV AOA((( > t)) e a(x)p*(x, s) ds dx
L;/NVXA()A((< : )’t)).a(x)pper(x,sj)dx

L K
% 2.2V A(X(< o7 kT ) ;1)) e a(x(sj + kTo))

j=1 k=0 5



3 mode triad model Gershgorin & Majda
2010

e Exactly solvable 3 mode model

du y

ditl = —mu + A(t) + oW,

dU2 . A
s = (—'72—|—I(LU0+30U1))U2+f—2(t)+U2W27

e qG-FDT possesses high skill for the mean response to the
changes in forcing even in highly non-Gaussian regime.

e qG-FDT performance not so good for the variance response to
the perturbations of dissipation in the strongly non-Gaussian
regime.



Information content

e Fact(Majda&W.2010): For time independent perturbation

[is ot o[ [t
T A~/ 2 2
+52/ /’iLgfwé P L %),
0 p 2 ) po(k)

e Most sensitive direction without perturbation in initial
distribution can be derived similar to the stationary situation
in the case of zero noise or the case of no perturbation in
noise.




Conclusion

e Linear response FDT theory can be extended to the case with
time periodic forcing

e Accurate and efficient algorithm?

e Application to (high dimension) climate models ?

e Generalisation to infinite dimensional model?

e Impact of model errors?



Thank You!



