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Recent results of the perturbation theory for
non-equilibrium statistical mechanics

Deterministic & Stochastic Perturbations
General properties

Applications on system of geophysical fluid
dynamical interest

Lorenz 96 — various observables

What Is a parametrization?
Mori Zwazig and Ruelle approaches

Try to convince you this is a useful framework
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Mathematics: Stability prop of time mean
state say nothing on the prop of the system

Cannot define a simple theory of the time-mean
properties relying only on the time-mean fields.

Physics: “no” fluctuation-dissipation theorem
for a chaotic dissipative system

non-equivalence of external/ internal fluctuations
= Climate Change is hard to parameterise

Numerics: Complex systems feature
multiscale properties, they are stiff numerical
problems, hard to simulate “as they are”
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Global structural properties (Saltzman 2002).

Deterministic & stochastic dynamical systems
Example: stability of the thermohaline circulation
Stochastic forcing: ad hoc “closure theory” for noise

Stat Mech & Thermodynamic perspective
Planets are non-equilibrium thermodynamical systems

Thermodynamics: large scale properties of climate
system; definition of robust metrics for GCMs, data

Ergodic theory and much more
Stat Mech for Climate response to perturbations

power required to
EQ maintain disequilibrium NON EQ




The response theory formalizes a
Gedankenexperiment: a system, a measuring
device, a clock, and a set of turnable knobs.

Changes of the statistical properties of a system in
terms of the unperturbed system

Divergence in the response is informative of
“tipping points”, where phase transitions occur

This seems a suitable environment for developing a
climate change theory

“Blind” use of several CM experiments

We struggle with concepts and computations of
climate sensitivity and climate response

We can use the theory for deriving
parametrizations!






Axiom A dynamical systems are very special
Include Anosov flows (hyperbolic, struct. stable, dense)

Non-wandering set is hyperbolic
Periodic points are dense

SRB invariant measure: time averages converge in a
Lebesgue sense to the ensemble averages for measurable

observables

When we perform numerical simulations, we more or
less implicitly set ourselves in these hypotheses

Not generic systems, but, following the chaotic hypothesis
by Gallavotti and Cohen (1995, 1996), systems with many
d.o.f. can be treated as If they were Axiom A systems when

macroscopic averages are considered.
Extension of ergodic hypothesis
These are, in some sense, good physical models!!!
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The invariant measure of the unperturbed system Is
not absolutely continuous w.r.t. Lebesgue

It is so only along the unstable (and neutral) manifold

it is singular in the stable directions (effect of the
contraction!)

Locally, “Cantor set times a smooth manifold”.
Kolmogorov measure...

For deterministic, dissipative chaotic etc. systems
FDT does not work

It Is not possible to write the response as a correlation
iIntegral, there is an additional term

The system, by definition, never explores the stable
directions, whereas a perturbations has components
also outside the unstable manifold

But...



For deterministic, dissipative chaotic etc.
systems FDT does not work

It is not possible to write the response as a
correlation integral, there is an additional term

The system, by definition, never explores the stable

directions, whereas a perturbations has
components also outside the unstable manifold

Recent studies (Branstator et al.) suggest that,
nonetheless, information can be retrieved

What is the time needed to build up a
statistics such that the FDT gives useful results?

Probably, numerical noise also helps
The choice of the observable is surely also crucial
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If the Axiom A flow Is perturbed as:

We can express the expectation value of
an observable @ as: [JGER ISR

n=1

where the nt" order perturbation can be
expressed as:

.:.;:. |'_||‘_

(@)"(t) = [ [ [ doydey. .. do, G ey, 0, )elt — oy Jelt — 0y) .. et — a,).

— —

11



with a causal Green function:

G ay,... 00 = /psgg(d:c) O(a1)B(o2 — 1) ...0(0p — 1) X

XAH(O’n -_ 0‘,;_1) Ca AH(O’Z -_ 01)3\1—1(01)@((13)

Expectation value of an operator evaluated over
the invariant measure p«-g(dx) of the unperturbed

flow!
Ale) = X(2)V(e) F2lglof I(r)A(z) = Alz(r))

where:
Projection on the Unperturbed evolution operator
perturbation flow

Kubo theory (Equil.) Is a special case... L. 2008
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Perturbation to @

Inear Green:

Short-term for G
Asymptotics for x

If 5 is even, Im { x} dominates
If 5 isodd, Re { x} dominates

Short term behaviour of G — asymptotic
behaviour of x'!
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The in-phase and out-of-phase responses are
connected by Kramers-Kronig relations:

Measurements of the real (imaginary) part of the

susceptibility = K-K =» best estimate of the imaginary
(real)

Every causal linear model obeys these constraints
K-K exist also for nonlinear susceptibilities

WiEal 2 (@) = (o)

Kramers, 192164; Kronig, 1927
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Deterministic numerical models are supplemented
with additional stochastic forcings.

Overall practical goals:

an approximate but convincing representation of the
spatial and temporal scales which cannot be resolved,

faster exploration of the attractor of the system, due to
the additional “mixing”;
Especially desirable when computational limitations

Fundamental reasons:

A good (“physical’”) invariant measure of a dynamical
system is robust with respect to the introduction of noise

exclusion of pathological solutions;
Limit of zero noise — statistics of the deterministic system?

Noise makes the invariant measure smooth
A very active, interdisciplinary research sector
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. Stfochastic forcin S

s e where U is a Wiener process
. Therefore, lliENand G050

- We obtain:
=€fde(1 (Tht-7)+
+5fd71d72 (Tl 772)7(t 71)77(t 72)"'0(3)

=¥ fd?:l (z,,7,)+0(e*) =

_1/2.9 ? [0 (0x) [ d7.0() (r)X,9,X 0, ®(F=x)+ 0(e*)



The correction to the expectation value of
any observable ~ variance of the noise

Stochastic system — deterministic system
Convergence of the statistical properties is fast

We have an explicit formula!
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Ensemble average over the realisations of
the stochastic processes of the
expectation value of the time correlation
of the response of the system:

Leading order is proportional to ¢?

It Is the convolution product of the linear
Green function!
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Computing the Fourier Transform we obtain:

Interestingly, we end up with the linear
susceptibility...
Let’s rewrite he eguation:

So:. between the
of the signal in the cases with and without
noise —

Stoch forcing enhances the Power Spectrum
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We know that IS analytic in the upper
complex plane

SO IS

Apart from complex zeros...
The real ( ) and imag ( ) obey
KK relations

From the observation of the power spectra we
obtain the real part

With KK analysis we obtain the imaginary part
We can reconstruct the linear susceptibility!
And from it, the Green function
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i dx /dt =F(x)—dx /dt = F(x

&wdxl/ dt = F ( )% dx; /dt = F (
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Excellent toy model of the atmosphere
Advection
Dissipation
Forcing

Test Bed for Data assimilation schemes

Becoming popular in the community of
statistical physicists
Scaling properties of Lyapunov & Bred vectors

Evolution Equations

Spatially extended, 2 Parameters: N & F



S ome properties
Let

and e =

Stationary State: e> )

N e e o o R L e AT BP

o o (m) =AF" F >5-  A~115 y~035
> m Is extended, In chaotic regime the
properties are intensive

 We perform simulations with specific F=8
and N=40, but results are “universal™




Global Perturbation

Observable: e=E/N
G2 (t)= 0t m). +6(t)k(F -2(m)

- O (0p) =1 (m),

Xe
4

~ We can compute the leading order for

poth the real and iImaginary part



—— Measured
—— Extrapolation
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Inverse FT of the susceptibility

Response to any forcing with the same spatial
pattern but with general time pattern
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Squared modulus of
Blue: Using stoch pert; Black: deter forcing

... And many many many less integrations

——((Peu(e)) Pule))/(26%) |
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Observable: globally averaged TS
~orcing: increase of CO, concentration
_Inear response:

_et’s perform an ensemble of experiments

Concentration is increased at t=0 and brought
back to initial value att=71

Fantastic, we estimate

...and we obtain:

... Now we can predict future T¢



Consider a two-level system

)

{ X = Fy(X)+Wx(X,
)

Y
Y =Fy(Y)+Yy(X,Y

m unperturbed = uncoupled

m perturbation = coupling ¥

m modelling = a perturbation of X that mimics this response

Surrogating the coupling: Fast=>»Slow Variables
Optimising Computer Resources

Underlining Mechanisms of Interaction
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We try to match the evolution of the single
trajectory of the X variables

Mori-Zwanzig Projector Operator technique: needs
to be made explicit

Accurate “Forecast”

We try to match the statistical properties of a
general observable A=A(X)

Ruelle Response theory
Accurate “Climate”

Match between these two approaches?



This system has the same expectation values
as the original system (up to 2"9 order)

We have explicit expression for the three
terms a (deterministic), b (stochastic), c
(memory)- 2"d order expansion




Diagrams: 15" and 2" order

Coupling




First order term: averaged coupling (Wx (X, Y))o,

WAWA
SavAY

Deterministic Parametrization MX(X(t))
This Is the “average” coupling
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Second order term (1/2): fluctuations around the mean
(OWx (X, Y)oWx (FT(X), f*(Y)))oy

A“ A‘

Stochastic Parametrization o(t
Expression for correlation properties
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Second order term (2/2): memory effect

<‘1’y,,'(X, Y)aY,ilPX,j(fs(X)’ fs( Y”)Po,v

WA aAANLAS
"l"!"“"

0.0
New term, small for vast
scale separation

This is required to match _[ dt h(T’ X(t o T))

local vs global 0
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Answers the following question

what is the effective X dynamics for an ensemble of
initial conditions Y(0), when o is known?

We split the evolution operator using a projection
operator P on the relevant variables
Effective dynamics has a deterministic
correction to the autonomous equation, a
term giving a stochastic forcings (due to
uncertainty in the the initial conditions Y(0)), a
term describing a memory effect.

One can perform an approximate calculation,
expanding around the uncoupled solution...
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r = L + L
Just a 2X2 system: x L1 129
o 5 Yy = Lo1x + Losy.
X IS “relevant
We solve with respect to y:

We plug the result into X:

t
T = L1z + L1 / ef22(t=5) 51 3(s) ds + Lige™22%y(0)
0

Markov Memory Noise



Optimal forecast in a probabillistic sense
2"d order expansion

Same as obtained with Ruelle

Parametrizations are “well defined” for CM & NWP

Memory required to
match local vs
global

f dt h(r, X(t—1)

0



We have used Ruelle response theory to study the impact of
deterministic and stochastic forcings to non-equilibrium
statistical mechanical systems
Freguency-dependent response obeys strong constraints
We can reconstruct the Green function!
A expectation value of observable = variance of the noise
SRB measure Iis robust with respect to noise
A power spectral density = to the sguared modulus of the
linear susceptiblility
More general case: A power spectral density >0
The method is VERY parsimonious

What is a parametrization? | hope | gave a useful answer
We have ground for developing new and robust schemes
Application to more interesting models

OPENING A POST-DOC POSITION SOON
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For deterministic, dissipative chaotic etc.
systems FDT does not work

It is not possible to write the response as a
correlation integral, there is an additional term

The system, by definition, never explores the stable

directions, whereas a perturbations has
components also outside the unstable manifold

Recent studies (Branstator et al.) suggest that,
nonetheless, information can be retrieved

What is the time needed to build up a
statistics such that the FDT gives useful results?

Probably, numerical noise also helps
The choice of the observable is surely also crucial
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The correction to the expectation value of
any observable ~ variance of the noise

Stochastic system — deterministic system
Convergence of the statistical properties is fast

We have an explicit formula!
If the unperturbed system has an acim:

We have a correlation integral, like in a FDT:
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Squared modulus of
Blue: Using stoch pert; Black: deter forcing

... And many many many less integrations
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Synchronic coherence of data
Data feature hugely varying degree of precision
Diachronic coherence of data

Technology and prescriptions for data collection
have changed with time

Space-time coverage
Data density (Antarctica vs Germany)
We have “direct” data only since Galileo time
Before, we have to rely on indirect (proxy) data

Merging of Data and Models
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The analysis of how systems respond to external
perturbations to their steady state constitutes one of
the crucial subjects in physics and mathematics

Sometimes, we use “blindly” several CM
experiments in order to understand the response

The natural variabllity blurs the signal, in order to be
rigorous we should repeat many times the same
experiment (and with various CMs)

In climate science, we struggle considerably with

concepts and computations of climate sensitivity
and climate response

We would like to be able to define more rigorously
Climate Change!
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The input and the output
are connected by the followmg inear
relationship involving

o(t) = fa(t —t)1(t)dt"

By applying Fourier Transform to both
members we obtain:

O(w) = a(w)! (w)
Is there a connection between the properties
of and those of ?
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In guasi-equilibrium statistical mechanics, the
Kubo theory (’50s) allows for an accurate
treatment of perturbations to the canonical
equilibrium state

In the linear case, the FDT bridges the properties of

the forced and free fluctuations of the system
When considering general dynamical systems
(e.g. forced and dissipative), the situation is
more complicated (no FDT, in general)

Recent advances (Ruelle, mostly): for a class of
dynamical systems it Is possible to define a
perturbative theory of the response to small
perturbations

We follow this direction...
We apply the theory also for stochastic forcings
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