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�  Recent results of the  perturbation theory for 
non-equilibrium statistical mechanics 
›  Deterministic & Stochastic Perturbations 

� General properties 
� Applications on system of geophysical fluid 

dynamical interest 
›  Lorenz 96 – various observables 

� What is a parametrization? 
›  Mori Zwazig and Ruelle approaches 

�  Try to convince you this is a useful framework 
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� Mathematics: Stability prop of time mean 
state say nothing on the prop of the system 
›  Cannot define a simple theory of the time-mean 

properties relying only on the time-mean fields.  

�  Physics: “no” fluctuation-dissipation theorem 
for a chaotic dissipative system 
›  non-equivalence of external/ internal fluctuations 
è Climate Change is hard to parameterise 

� Numerics: Complex systems feature 
multiscale properties, they are stiff numerical 
problems, hard to simulate “as they are” 



(Kleidon, 2011) 
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�  Global structural properties (Saltzman 2002). 
�  Deterministic & stochastic dynamical systems 

›  Example: stability of the thermohaline circulation  
›  Stochastic forcing: ad hoc “closure theory” for noise 

�  Stat Mech & Thermodynamic perspective 
›  Planets are non-equilibrium thermodynamical systems 
›  Thermodynamics: large scale properties of climate 

system; definition of robust metrics for GCMs, data 
›  Ergodic theory and much more 
›  Stat Mech for Climate response to perturbations 
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�  The response theory formalizes a 
Gedankenexperiment: a system, a measuring 
device, a clock, and a set of turnable knobs. 

�  Changes of the statistical properties of a system in 
terms of the unperturbed system 

�  Divergence in the response is informative of 
“tipping points”, where phase transitions occur 

�  This seems a suitable environment for developing a 
climate change theory 
›  “Blind” use of several CM experiments 
›  We struggle with concepts and computations of 

climate sensitivity and climate response 

�  We can use the theory for deriving 
parametrizations! 
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�  Axiom A dynamical systems are very special 
›  Include Anosov flows (hyperbolic, struct. stable, dense) 
›  Non-wandering set is hyperbolic 
›  Periodic points are dense   
›  SRB invariant measure: time averages converge in a 

Lebesgue sense to the ensemble averages for measurable 
observables  

  

�  When we perform numerical simulations, we more or 
less implicitly set ourselves in these hypotheses 
›  Not generic systems, but, following the chaotic hypothesis 

by Gallavotti and Cohen (1995, 1996), systems with many 
d.o.f. can be treated as if they were Axiom A systems when 
macroscopic averages are considered. 

›  Extension of ergodic hypothesis 
›  These are, in some sense, good physical models!!!  
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�  The invariant measure of the unperturbed system is 
not absolutely continuous w.r.t. Lebesgue 
›  it is so only along the unstable (and neutral) manifold 
›  it is singular in the stable directions (effect of the 

contraction!) 
›  Locally, “Cantor set times a smooth manifold”. 
›  Kolmogorov measure… 

�  For deterministic, dissipative chaotic etc. systems 
FDT does not work 
›  It is not possible to write the response as a correlation 

integral, there is an additional term 
›  The system, by definition, never explores the stable 

directions, whereas a perturbations has components 
also outside the unstable manifold  

�   But… 



�  For deterministic, dissipative chaotic etc. 
systems FDT does not work 
›  It is not possible to write the response as a 

correlation integral, there is an additional term 
›  The system, by definition, never explores the stable 

directions, whereas a perturbations has 
components also outside the unstable manifold  

�  Recent studies (Branstator et al.) suggest that, 
nonetheless, information can be retrieved 

� What is the time needed to build up a 
statistics such that the FDT gives useful results? 
›  Probably, numerical noise also helps  
›  The choice of the observable is surely also crucial 
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�  If the Axiom A flow is perturbed as: 

� We can express the expectation value of 
an observable Φ as: 

� where the nth order perturbation can be 
expressed as:   



12 

�  with a causal Green function: 

›  Expectation value of an operator evaluated over 
the invariant measure ρSRB(dx) of the unperturbed 
flow! 

�  where:                     and 

        Projection on the                 Unperturbed evolution operator 
        perturbation flow 

�  Kubo theory (Equil.) is a special case… L. 2008 



�  Perturbation to Φ: 

�  Linear Green: 

�  Short-term for G 
� Asymptotics for χ 

�  If β is even, Im {χ} dominates 
�  If β is odd, Re {χ} dominates 

�  Short term behaviour of G → asymptotic 
behaviour of χ! 

Φ
(1) (t) = dσ∫ GΦ
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�  The in-phase and out-of-phase responses are 
connected by Kramers-Kronig relations: 
›  Measurements of the real (imaginary) part of the 

susceptibility è K-K è best estimate of the imaginary 
(real) 

�  Every causal linear model obeys these constraints 
�  K-K exist also for nonlinear susceptibilities 

*)1()1( )]([)( ωχωχ −=with 

Kramers, 1926; Kronig, 1927 
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�  Deterministic numerical models are supplemented 
with additional stochastic forcings.  

�  Overall practical goals: 
›  an approximate but convincing representation of the 

spatial and temporal scales which cannot be resolved; 
›  faster exploration of the attractor of the system, due to 

the additional “mixing”; 
›  Especially desirable when computational limitations 

�  Fundamental reasons: 
›  A good (“physical”) invariant measure of a dynamical 

system is robust with respect to the introduction of noise 
�  exclusion of pathological solutions; 

›  Limit of zero noise → statistics of the deterministic system?  
›  Noise makes the invariant measure smooth 

�  A very active, interdisciplinary research sector 
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�                        , where       is a Wiener process  
�  Therefore,          and 
� We obtain: 

�  The linear correction vanishes; only even 
orders of perturbations give a contribution 

� No time-dependence 
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�  The correction to the expectation value of 
any observable ~ variance of the noise 
›  Stochastic system → deterministic system 
›  Convergence of the statistical properties is fast 

� We have an explicit formula! 
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�  Ensemble average over the realisations of 
the stochastic processes of the 
expectation value of the time correlation 
of the response of the system: 

�  Leading order is proportional to ε2 

�  It is the convolution product of the linear 
Green function!  
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� Computing the Fourier Transform we obtain: 

�  Interestingly, we end up with the linear 
susceptibility... 

�  Let’s rewrite he equation: 
 
�  So: difference between the power spectrum 

of the signal in the cases with and without 
noise → linear susceptibility 
›  Stoch forcing enhances the Power Spectrum 

( ) ( )( )2122
, ωχερδ ωε Φ≈Φ

( ) ( ) ( ) ( )2
1

22
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� We know that            is analytic in the upper 
complex plane 

�  So is 
›  Apart from complex zeros... 

�  The real (              ) and imag (             ) obey 
KK relations 
›  From the observation of the power spectra we 

obtain the real part 
›  With KK analysis we obtain the imaginary part 

� We can reconstruct the linear susceptibility!  
� And from it, the Green function                          

( )( )ωχ 1
Φ

( )( )[ ] ( )( )[ ] ( )( )[ ]ωχωχωχ 111 argloglog ΦΦΦ += i

( )( )[ ]ωχ 1log Φ
( )( )[ ]ωχ 1arg Φ
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›  If 

�    

›  If 
�    

›  If                                                      →Schauder Dec. 

�    
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�  Excellent toy model of the atmosphere 
›  Advection 
›  Dissipation 
›  Forcing 

�  Test Bed for Data assimilation schemes 
�  Becoming popular in the community of 

statistical physicists 
›  Scaling properties of Lyapunov & Bred vectors 

�  Evolution Equations 

�  Spatially extended, 2 Parameters: N & F 
( ) Fxxxxx iiiii +−−= −+− 211 Nii xxNi +==    ,...,1
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�  Let 

� and 

�  Stationary State: 

� Closure: 
›  System is extended, in chaotic regime the 

properties are intensive  

� We perform simulations with specific F=8 
and N=40, but results are “universal” 
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�    

� Observable: e=E/N  

 
� We can compute the leading order for 

both the real and imaginary part 
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Rigorous extrapolation 

LW HF 
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�  Inverse FT of the susceptibility 
�  Response to any forcing with the same spatial 

pattern but with general time pattern 
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�  Squared modulus of 
�  Blue: Using stoch pert; Black: deter forcing 
�  ... And many many many less integrations   

( )ωχ )1(
e
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© Observable: globally averaged TS 
©  Forcing: increase of CO2 concentration 
©  Linear response: 
©  Let’s perform an ensemble of experiments 

© Concentration is increased at t=0 and brought 
back to initial value at t=τ  

©  Fantastic, we estimate 

© …and we obtain: 

© … Now we can predict future TS 
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�  Surrogating the coupling: FastèSlow Variables 
� Optimising Computer Resources 
� Underlining Mechanisms of Interaction 



� We try to match the evolution of the single 
trajectory of the X variables 
›  Mori-Zwanzig Projector Operator technique: needs 

to be made explicit 
›  Accurate “Forecast” 

� We try to match the statistical properties of a 
general observable A=A(X) 
›  Ruelle Response theory 
›  Accurate “Climate” 

� Match between these two approaches?  
31 



�  This system has the same expectation values 
as the original system (up to 2nd order) 

� We have explicit expression for the three 
terms a (deterministic), b (stochastic), c 
(memory)- 2nd order expansion 

32 

a 

c 

b 

Deterministic  ✓ 
Stochastic  ✓ 
Memory    ✖ 

T 
O 
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�  1 

�  2 + 

Time 

Coupling 
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� Deterministic Parametrization 
›  This is the “average” coupling 
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�  Stochastic Parametrization 
›  Expression for correlation properties 
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�  New term, small for vast 
scale separation 
›  This is required to match 

local vs global 



�  Answers the following question 
›  what is the effective X dynamics for an ensemble of 

initial conditions Y(0), when ρY is known? 
›  We split the evolution operator using a projection 

operator P on the relevant variables 

�  Effective dynamics has a deterministic 
correction to the autonomous equation, a 
term giving a stochastic forcings (due to 
uncertainty in the the initial conditions Y(0)), a 
term describing a memory effect. 

�  One can perform an approximate calculation, 
expanding around the uncoupled solution… 
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�  Just a 2X2 system: 
�  x is “relevant” 
� We solve with respect to y: 

� We plug the result into x: 

� Markov  Memory    Noise 



� Optimal forecast in a probabilistic sense 
�  2nd order expansion 
�  Same as obtained with Ruelle 

›  Parametrizations are “well defined” for CM & NWP 
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a 

c 

b 

� Memory required to 
match local vs 
global 
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�  We have used Ruelle response theory to study the impact of 
deterministic and stochastic forcings to non-equilibrium 
statistical mechanical systems 

�  Frequency-dependent response obeys strong constraints 
›  We can reconstruct the Green function! 

�  Δ expectation value of observable ≈ variance of the noise 
›  SRB measure is robust with respect to noise 

�  Δ power spectral density ≈ to the squared modulus of the 
linear susceptibility 
›  More general case: Δ power spectral density >0 
›  The method is VERY parsimonious 

�  What is a parametrization? I hope I gave a useful answer 
›  We have ground for developing new and robust schemes 

�  Application to more interesting models 
�  OPENING A POST-DOC POSITION SOON 



41 

�  D. Ruelle, Phys. Lett. 245, 220 (1997) 
�  D. Ruelle, Nonlinearity 11, 5-18 (1998) 
�  C. H. Reich, Phys. Rev. E 66, 036103 (2002) 
�  R. Abramov and A. Majda, Nonlinearity 20, 2793 (2007) 
�  U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Phys. 

Rep. 461, 111 (2008) 
�  D. Ruelle, Nonlinearity 22 855 (2009) 
�  V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E. Vartiainen: Kramers-Kronig 

Relations in Optical Materials Research, Springer, Heidelberg, 2005 
�  V. Lucarini, J. Stat. Phys. 131, 543-558 (2008)  
�  V. Lucarini, J. Stat. Phys. 134, 381-400 (2009)  
�  V. Lucarini and S. Sarno, Nonlin. Proc. Geophys. 18, 7-27 (2011) 
�  V. Lucarini, T. Kuna, J. Wouters, D. Faranda, Nonlinearity (2012) 
�  V. Lucarini, J. Stat. Phys. 146, 774 (2012) 
�  J. Wouters and V. Lucarini, J. Stat. Mech. (2012) 
�  J. Wouters and V. Lucarini, ArXiv (2012) 
 



Rigorous extrapolation 

LW HF 
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�  For deterministic, dissipative chaotic etc. 
systems FDT does not work 
›  It is not possible to write the response as a 

correlation integral, there is an additional term 
›  The system, by definition, never explores the stable 

directions, whereas a perturbations has 
components also outside the unstable manifold  

�  Recent studies (Branstator et al.) suggest that, 
nonetheless, information can be retrieved 

� What is the time needed to build up a 
statistics such that the FDT gives useful results? 
›  Probably, numerical noise also helps  
›  The choice of the observable is surely also crucial 
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�  The correction to the expectation value of 
any observable ~ variance of the noise 
›  Stochastic system → deterministic system 
›  Convergence of the statistical properties is fast 

� We have an explicit formula! 
�  If the unperturbed system has an acim: 

� We have a correlation integral, like in a FDT:  

( ) ( ) ( ) ( ) ( )xfXXdxxd jjii
1

01
2 τ

ε ρττερδ Φ∂∂Θ−≈Φ ∫∫

( ) ( ) ( ) ( )xfCxBdxd 1
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�  Squared modulus of 
�  Blue: Using stoch pert; Black: deter forcing 
�  ... And many many many less integrations   

( )ωχ )1(
m

45 



46 

�  Synchronic coherence of data 
›  Data feature hugely varying degree of precision 

� Diachronic coherence of data 
›  Technology and prescriptions for data collection 

have changed with time 

�  Space-time coverage 
›  Data density (Antarctica vs Germany) 
›  We have “direct” data only since Galileo time 
›  Before, we have to rely on indirect (proxy) data 

� Merging of Data and Models 
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�  The analysis of how systems respond to external 
perturbations to their steady state constitutes one of 
the crucial subjects in physics and mathematics 

�  Sometimes, we use “blindly” several CM 
experiments in order to understand the response 

�  The natural variability blurs the signal, in order to be 
rigorous we should repeat many times the same 
experiment (and with various CMs) 

�  In climate science, we struggle considerably with 
concepts and computations of climate sensitivity 
and climate response 

�  We would like to be able to define more rigorously 
Climate Change! 
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�  The input I(t)=e(t) and the output O(t)=〈Φ(1)(t)〉 
are connected by the following linear 
relationship involving  a(t)=G(1) (t): 

�  By applying Fourier Transform to both 
members we obtain: 

�  Is there a connection between the properties 
of a(t)=G(1) (t) and those of a(ω)= χ(1) (ω)? 
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�  In quasi-equilibrium statistical mechanics, the 
Kubo theory (’50s) allows for an accurate 
treatment of perturbations to the canonical 
equilibrium state 
›  In the linear case, the FDT bridges the properties of 

the forced and free fluctuations of the system 
�  When considering general dynamical systems 

(e.g. forced and dissipative), the situation is 
more complicated (no FDT, in general) 

�  Recent advances (Ruelle, mostly): for a class of 
dynamical systems it is possible to define a 
perturbative  theory of the response to small 
perturbations 
›   We follow this direction…  

�  We apply the theory also for stochastic forcings 


