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Why Study Multi-year Prediction?

Predictions are critical tests of our understanding of the
climate system.
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Forced Predictability

Models using both natural
and anthropogenic forcing

Models using only natural
forcings

IPCC-AR4, fig. 9.5
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Evidence of Unforced Multi-year Predictability

Fig. 13. a Level 3 temperature (170 m) first principle component
trajectories from ensemble A. Principle component units are C.
b The normalized ensemble variances along with a 95% red noise
null hypothesis

Fig. 14. a Meridional stream function principle component 2 and
circulation index trajectories from ensemble A. Units are Sv. b Nor-
malized ensemble variances along with a 95% red noise null hypoth-
esis

Fig. 15. a SSS PC-1 trajectories from ensemble A. Principle com-
ponent units are psu. b the normalized ensemble variance along with
a 95% red noise null hypothesis

climatological variance after 12—13 y, whereas the stream
function index crosses after less than 5 y. Both variances
show growth somewhat slower than the red noise null
hypothesis at times less than 3 y. However, the THC index
variance increases much faster thereafter, crossing the
50% line in about the same time as the red noise null
hypothesis would suggest. We interpret this result as an
indication that the THC index is significantly a§ected by
the less predictable smaller scale variability described by
the higher stream function EOFs. On the other hand,
PC-2 represents the amplitude of a large-scale spatially
averaged pattern whose variability is decoupled from the
higher EOF patterns. Therefore, PC-2 can be expected to
maintain more predictability than the THC index. This
result highlights the importance of employing a suite of
fields for assessing predictability as well as to point out
that potential for pessimistic predictability times based on
indices representing non-spatially averaged quantities. It
should be noted that the reduction of the ensemble vari-
ance seen between years 10—15 might be considered signif-
icant based on the F-test. In the absence of similar
behavior seen in other fields, we will not consider this
fluctuation to be of importance.

5.4 Predictability of the North Atlantic SSS and SST

Figures 15 and 16 show the first principle component
ensemble trajectories and normalized ensemble variance
for North Atlantic SSS and SST. SST PC-1 reaches 50%
of the climatological variance after around 5 y (roughly
1/8 of an oscillation period) whereas the SSS EOF-1
pattern reaches this mark after 13 y (roughly 1/4 of a peri-
od). The initial 1—2 y ensemble variance growth seen
for the SST is consistent with red noise, but it slows
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Figure: Trajectories of leading principal component of 170m ocean
temperature simulated by GFDL model; from Griffies and Bryan (1997).
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Claims of Multi-Year Predictability in Stationary Models

I Latif and Barnett (1994, Science)

I Grötzner et al. (1999, J. Climate)

I Boer (2000, Climate Dyn.)

I Delworth and Mann (2000, Climate Dyn.)

I Collins (2002; Climate Dynamics)

I Collins and Sinha (2003; Geophys. Res. Letters)

I Pohlmann et al. (2004; J. Climate)

I Latif et al. (2004; J. Climate)

I Boer and Lambert (2008; Geophys. Res. Letters)

I Branstator et al. (2011; J. Climate)
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Percent of Predictable Variance of
Decadal Mean 2m-Temperature

Figure: Boer and Lambert (2008)
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Challenges in Predicting the Real Climate System

I Forced Predictability
I accurate predictions of anthropogenic and natural forcing
I accurate predictions of the response to climate forcing.

I Unforced Predictability
I accurate observations of the subsurface ocean
I construct initial conditions without “shock” or “drift”
I different models imply different levels of predictability

8 / 39



Dynamical Predictions (Keenlyside et al. 2008)

1950s till the mid-1960s, strengthens thereafter, peaking between the
late-1980s to late-1990s, and subsequently weakens again (Fig. 2a).
Although consistent with SST observations25, the veracity of these
results is hard to assess, as direct MOC observations are insufficient8

and large uncertainties exist among ocean model simulations21 and
ocean analyses. The small ensemble spread relative to the low fre-
quency MOC fluctuations also supports the utility of the initializa-
tion scheme.

In contrast to measurements of the MOC, regular hydrographic
observations in the Labrador Sea extend back past the 1950s. As
density changes in the Labrador Sea are widely accepted to force
MOC variations5,21,25, these observations provide an alternative
method to assess MOC initialization. Simulated multidecadal fluc-
tuations of wintertime Labrador Sea convection, weakest around
1970 and strongest in the early 1990s, broadly agree with observations
of Labrador Sea Water thickness26, which is closely related to con-
vection (Fig. 2b). Furthermore, simulated MOC variations closely
follow Labrador Sea convection by several years (Fig. 2). Thus, these
results provide evidence that observed MOC fluctuations are, to a
certain degree, skilfully initialized.

Onmultidecadal timescales, Labrador Sea convection is initialized
directly by SST relaxation. The latter includes the history of observed

atmospheric forcing, and in particular the North Atlantic Oscillation
(NAO), which plays a key role in forcing multidecadal MOC varia-
tions20,21,25. Consistently, observed NAO variations lead simulated
MOC changes by several years, but inconsistently, they are not well
related to simulated Labrador Sea convection, except perhaps on
multidecadal timescales (Fig. 2). Although the simulated NAO index
does not correspondwell with the observations, it strengthens during
the simulated period, and thus probably also contributes to forcing
MOC variations (Fig. 2c).

Initialized decadal fluctuations in the Atlantic MOC are predict-
able a decade in advance, with ensemble-spread small compared to
the signal (Fig. 3a); hindcast skill is, however, largely due to capturing
the long-term trend. MOC variations in the twentieth century-RF
simulations are weak, and not surprisingly, unrelated to those in the
initialization simulations. Model studies indicate that multidecadal
Atlantic MOC variations force inter-hemispheric dipolar SST anom-
alies5,7,14,16,19. Observed variations of the latter are predicted a decade
in advance by the hindcasts, but not by the twentieth century-RF
simulations (Fig. 3b). Hindcast skill here is thus consistent with
predicting Atlantic MOC variations. Consistently, North Atlantic
(0–60uN) SST is better predicted by the hindcasts (r5 0.77) than
the twentieth century-RF simulations (r5 0.66) (not shown). The
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Figure 1 | Correlation skill in predicting observed ten-year mean surface
temperature anomalies a decade in advance relative to other more
traditional approaches. a, Skill of nine ten-year-long predictions, evenly
distributed over the period 1955–2005, made with a climate model
initialized using ocean (SST) observations and runwith projected changes in
radiative forcing. b, As in a but given by persistence. c, As in a, but not
initialized using ocean observations and with radiative forcing following
observations. d, As in c, but withmodel SST relaxed to observations between
60u S and 60uN (seen in near perfect correlations over the ocean).
Correlations exceeding 0.58 are significant at the 5% level. Regions where
initialization results in a significant enhancement or reduction in skill

compared to radiative-forcing-only simulations are indicated by a blue
cross-hatching in a and c, respectively. Land regions where restoring to
observed SST anomalies provides a significant enhancement in skill relative
to radiative-forcing-only simulations are indicated by blue cross-hatching in
d. Correlations in a and c are field significant at close to the 0% level, while
those in b pass the field significance test at the 1% level. Details of
significance estimation are given in Methods. Correlations in a, c and d are
computed from the ensemble mean of three simulations. SST observations
are from HADISST27; land surface temperature observations are from
CRUTEMP328.
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Figure: Correlation skill in predicting observed 10-year mean surface
temperature anomalies a decade in advance for 9 ICs during 1955-2005.
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CMIP5 Decadal Hindcast Experiments

1900

2000
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Skill of CMIP5 Decadal Predictions

16 

  296 
     297 

Fig. 2. Local anomaly correlation of (left) years 2-5 and (right) years 6-9 hindcasts for the 298 
CMIP5 models compared to damped persistence and the empirical multivariate AR1 299 
model, for hindcasts initialized yearly from 1960-2000. (a) Damped persistence (b) 300 
empirical multivariate AR1 model (LIM) (c) HadCM3 (d) MPI-ESM-LR (e) GFDL-301 
CM2p1. Contour interval is 0.1 with negative values indicated by blue shading. Shading 302 
of positive values starts at 0.1; redder shading denotes larger values of correlation. 303 

Years 2-5 Years 6-9 

from fig. 2 of Newman (2012) 11 / 39



Empirical Predictions

I Empirical predictions avoid many of the problems faced by
dynamical models. For example:

I They avoid “initialization shock” and “climate drift”.
I They do not require a dynamically complete state vector.

I Empirical predictions are easier than dynamical predictions

I On decadal time scales, much predictability comes from slowly
varying anomalies, which can be predicted by empirical models.

I Predictability of linear models can be diagnosed in ways that
nonlinear models cannot.
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Models in Empirical Decadal Prediction

persistence xt+τ = xt

pointwise regression xt+τ = βτxt

linear inverse model (LIM) xt+τ = Lτxt

multivariate linear regression xt+τ = Lτxt

constructed analogue xt+τ =
∑

n∈training wnxn+τ
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Surprise!

Standard implementations of the constructed analogue
method give forecasts that are the same as linear regression.
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Tippett and DelSole (2012)
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Skill of Constructed Analogue for NINO3.4

EOFs 10 25 30 35

correlation (CV) 0.51 0.29 0.22 0.12
variance fraction (CV) 0.51 1.18 1.66 2.45

forecasts made in the beginning of July for the following March-May
average (lead-8) of the NINO34 index during the period 1955-2003.
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Predictions of Simulated SST (Hawkins et al. 2011)

term predictability for this important region. However,
outside this region the RMS error is worse than

climatology.

It is clearly important to consider more than one mea-
sure of prediction skill when analysing prediction systems

as these two metrics have produced different estimates of

which method works best, and the choice of which to use
will be situation dependent.

4.3 Where does the long lead time skill in HadGEM1
come from?

Although the lagged correlations predictions tend to per-
form best for shorter lead times, the methods which use

non-local information tend to perform better for longer lead

times, suggesting that they are predicting some of the
dynamical evolution of the SSTs.

The tropical north Atlantic skill in HadGEM1 at long

lead times is an intriguing region of skill to explain, as
this region has low potential predictability (Fig. 1).

Interestingly, the skill is larger for the mean of years

6–10 than the mean of years 1–5 (not shown) suggesting
that the skill comes from a non-local source. To more

convincingly demonstrate the non-local mechanisms, a

series of data withholding experiments were performed.
Figure 6 shows how the correlation skill for HadGEM1

for a lead time of 6–10 years changes as different

regions are masked out of the construction of the sta-
tistical model5—a far North Atlantic region (northwards

of 47!N) and a Gulf Stream region (GSR). These regions

are chosen as they are significantly correlated with the
tropical north Atlantic at 6–10 year lead times (not

shown).

For the Atlantic LIM method (left column), removing
the far North Atlantic region completely removes the skill

from the tropical north Atlantic. For the Atlantic CA

method (right column), both regions seem important, and
removing each in turn reduces the skill, which again dis-

appears completely when both regions are removed from

the domain. A final test, removing the tropical region itself
(bottom row), shows that even when the local tropical data

is not used in the construction of the statistical model, there
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Fig. 4 Root mean square error
relative to the climatological
RMS error for HadCM3, for
lagged correlations, LIM and
CA predictions using the
Atlantic domain. The skill for
the full set of predictions is
shown in Fig. S5

5 For the LIM method, the estimated EOFs can be extended into the
masked regions through regression onto the SSTs, allowing a
prediction to subsequently be made for all regions. For the CA
method, the estimation of the weights in Eq. 10 does not include the
masked regions, but Eq. 11 can use all the data to make a prediction.

E. Hawkins et al.: Statistical decadal predictions of SSTs 2503

123

I L estimated from 7 EOFs of 140 years pre-industrial control.
I CA estimated 140 years of PiCNTRL, all grid points
I 10-year prediction based on preceding 140 year training data.
I Predictability of Pacific SST limited to under two years. 16 / 39



Correlation Skill
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Multi-Year Predictions of Observed SST (Newman 2012)
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Fig. 4.  Top: LIM skill for the 1900-2008 period for forecast leads of (left) 2-5 years and 313 
(right) 6-9 years. Middle: Same but expected skill. Bottom: LIM skill for the 1900-2008 314 
period but where projection of the initial conditions on the leading eigenmodes (Fig. 5) 315 
are removed. 316 
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I correlation skill of surface temperature for leads 6-9 years
I 8, 6, 6 EOFs of IndoPacific, Atlantic, land surface temperature
I L from 1yr lagged 1900-2009 HadISST data (“observations”).
I Leave-10-out cross validation.
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Diagnosis of LIM Predictability (Newman 2012)
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(right) 6-9 years. Middle: Same but expected skill. Bottom: LIM skill for the 1900-2008 314 
period but where projection of the initial conditions on the leading eigenmodes (Fig. 5) 315 
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xt+τ = Lτxt =
∑
k

λτ
kuk

(
vT
k xt

)
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Least Damped Eigenmode of LIM (Newman 2012)
19 
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Fig. 5. Leading empirical normal modes, with their associated projection coefficient time 321 
series. Contour interval is the same in all panels. Sign is arbitrary but is consistent with 322 
coefficient time series. Red shading indicates one sign, and blue shading indicates the 323 
other sign. 324 
  325 
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“Secular trend pattern”
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Second Least Damped Eigenmode of LIM (Newman 2012)
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most energetic phase: Atlantic decadal variability
least energetic phase: PDO when ENSO is removed
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Empirical Decadal Predictions

I Newman (2007)

I Kruger and von Storch (2010)

I Hawkins et al. (2011)

I Zanna (2012)

I Newman (2012)

I DelSole, Jia, and Tippett (2012)
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DelSole, Jia, and Tippett (2012)

Fit Lτ to pre-industrial control runs, then predict observations.

I Lτ is determined independently of observations (no artificial skill).

I Lots of data available (1500 years for training and verification)

I Regression model has skill only to the extent that dynamical models
capture the correct space-time structure of observed variability.

I Regression model fitted to 20 EOFs from 8 CMIP5 control runs

23 / 39



Predictions of Observed SST (DelSole, Jia, Tippett 2012)
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Average Predictability Time (APT)
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Decomposing Predictability

Find components that maximize APT (DelSole and Tippett 2009).

APT = 2

∫ ∞
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Most Predictable Component in CMIP5 Pre-industrial
Control Runs
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Skill in Predicting the Most Predictable Component in
Observations (1910-2004).
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2nd and 4th Predictable Components

2nd PrC (PDO) 4th PrC
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Coupling between 2nd and 4th Predictable Components
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Decadal Experiments with GFDL Model (Yang et al. 2012)
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Can the IMP and forced response be distinguished?
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Fingerprinting Method

Fit observed annual average SST to

Tobs(x , y , t) = afor (t)Tfor (x , y) + aimp(t)Timp(x , y) + w(x , y , t)
Observed Forced Internal Random

Response Pattern Noise

Detection: Test hypothesis afor (t) = 0.

Attribution: Test hypothesis afor (t) = predicted amplitude.
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Forced-to-Unforced Discriminant

Find the pattern Tfor (x , y) that maximizes detectability in models
(Jia and DelSole 2012).
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Forced Pattern

shaded area: 95% confidence interval of forced pattern in observations.

blue line: Ensemble mean amplitude of forced pattern in models
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Project Most Predictable Pattern Onto Observations

shaded area: 66% confidence interval of IMP in observations.

red line: Observed Atlantic Multidecadal Oscillation (AMO) index.

Unforced climate models naturally simulate a multi-decadal
component very similar to the AMO.

DelSole, Tippett, and Shukla (2011)
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Global Mean Sea Surface Temperature
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Global Mean Sea Surface Temperature
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Summary

I Both dynamical and empirical models can skillfully predict SSTs on
multi-year time scales.

I Linear models can be decomposed into components that explain
skill.

I Unforced climate models naturally simulate a multi-decadal
component very similar to the AMO.

I Empirical model derived from dynamical models show skill of
predicting certain components of annual mean SST up to 9 years.

I Recent decadal predictions show hindcast skill in N. Atlantic.
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