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Why Study Multi-year Prediction?
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Why Study Multi-year Prediction?

Predictions are critical tests of our understanding of the
climate system.
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Forced Predictability
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Evidence of Unforced Multi-year Predictability

170 meter temperature trajectories for ensemble A
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Figure: Trajectories of leading principal component of 170m ocean

temperature simulated by GFDL model; from Griffies and Bryan (1997).
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Claims of Multi-Year Predictability in Stationary Models
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Percent of Predictable Variance of
Decadal Mean 2m-Temperature

10-year average
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Figure: Boer and Lambert (2008)
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Challenges in Predicting the Real Climate System

» Forced Predictability
» accurate predictions of anthropogenic and natural forcing
> accurate predictions of the response to climate forcing.

» Unforced Predictability

» accurate observations of the subsurface ocean
» construct initial conditions without “shock” or “drift”
» different models imply different levels of predictability
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Dynamical Predictions (Keenlyside et al. 2008)

b Persistence

a Hindcast
60°N
®
RN
Kl
5
20°N
00 188
60°N
®
S 4N
T
5
20°N
[ = L—— T
120°W 80°W 40°W  0°  40°E 120°W 80°W 40°W  0°  40°E
Longitude Longitude
[E———— I I | E—
-1 -0.86 -0.72 -0.58 058 0.72 0.86 1

Figure: Correlation skill in predicting observed 10-year mean surface
temperature anomalies a decade in advance for 9 ICs during 1955-2005.
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CMIP5 Decadal Hindcast Experiments
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Skill of CMIP5 Decadal Predictions

HadCM3 (DePreSys)

from fig. 2 of Newman (2012) 11/39



Empirical Predictions

» Empirical predictions avoid many of the problems faced by
dynamical models. For example:

» They avoid “initialization shock” and “climate drift".
» They do not require a dynamically complete state vector.

» Empirical predictions are easier than dynamical predictions

» On decadal time scales, much predictability comes from slowly
varying anomalies, which can be predicted by empirical models.

> Predictability of linear models can be diagnosed in ways that
nonlinear models cannot.
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Models in Empirical Decadal Prediction

persistence Xtpr = Xt
pointwise regression Xtpr = BrXe
linear inverse model (LIM)  x¢1r = L™x;
multivariate linear regression Xt = L;yX;

constructed analogue Xpar = Znetraining WnXn1r
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Surprise!

Standard implementations of the constructed analogue

method give forecasts that are the same as linear regression.
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Skill of Constructed Analogue for NINO3.4

EOFs 10 25 30 35
correlation (CV) 0.51 0.29 0.22 0.12
variance fraction (CV) 051 1.18 1.66 2.45

forecasts made in the beginning of July for the following March-May
average (lead-8) of the NINO34 index during the period 1955-2003.
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Predictions of Simulated SST (Hawkins et al. 2011)

SST RMS error relative to climatology - HadCM3
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» L estimated from 7 EOFs of 140 years pre-industrial control.

» CA estimated 140 years of PiICNTRL, all grid points

» 10-year prediction based on preceding 140 year training data.

> Predictability of Pacific SST limited to under two years. 1639



Correlation Skill
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skill is 1 (perfect!). MSE grows quadratically with time.
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Multi-Year Predictions of Observed SST (Newman 2012)

LIM
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» correlation skill of surface temperature for leads 6-9 years

» 8, 6, 6 EOFs of IndoPacific, Atlantic, land surface temperature
» L from lyr lagged 1900-2009 HadISST data (“observations”).
» | eave-10-out cross validation.
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Diagnosis of LIM Predictability (Newman 2012)

LIM, leading 3 eigenmodes removed
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Least Damped Eigenmode of LIM (Newman 2012)
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“Secular trend pattern”
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Second Least Damped Eigenmode of LIM (Newman 2012)
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most energetic phase: Atlantic decadal variability
least energetic phase: PDO when ENSO is removed
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Empirical Decadal Predictions

Newman (2007)

Kruger and von Storch (2010)
Hawkins et al. (2011)

Zanna (2012)

Newman (2012)

DelSole, Jia, and Tippett (2012)
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DelSole, Jia, and Tippett (2012)

Fit L to pre-industrial control runs, then predict observations.

» L, is determined independently of observations (no artificial skill).
> Lots of data available (1500 years for training and verification)

> Regression model has skill only to the extent that dynamical models
capture the correct space-time structure of observed variability.

> Regression model fitted to 20 EOFs from 8 CMIP5 control runs
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Predictions of Observed SST (DelSole, Jia, Tippett 2012)
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Figure: Skill for observed unforced N. Atlantic SST during 1910-2004.

Red: Predict independent twentieth century runs
Blue: Predict independent pre-industrial control runs
Green: Persistence
Black: Predict observed unforced anomalies
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Average Predictability Time (APT)

predictability

APT =2 /OO <O—g/im — Ojorecast(T)> dr
0 9 clim

DelSole and Tippett (2009a, 2009b)



Decomposing Predictability

Find components that maximize APT (DelSole and Tippett 2009).
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Most Predictable Component in CMIP5 Pre-industrial
Control Runs

180

| | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7
) B
obs
AMO|
o 1
he)
E W
= 0
Q.
IS
<< -1
N 1920 1940 1960 1980 2000
Year

27 /39



Skill in Predicting the Most Predictable Component in

Observations (1910-2004).
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2nd and 4th Predictable Components
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Coupling between 2nd and 4th Predictable Components
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Decadal Experiments with GFDL Model (Yang et al. 2012)
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Can the IMP and forced response be distinguished?
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Fingerprinting Method

Fit observed annual average SST to

Tobs(X,y,t) = apr(t) Trr(x,y) + aimp(t) Timp(Xa}/) + w(x,y,t)
Observed Forced Internal Random
Response Pattern Noise

Detection: Test hypothesis ag,(t) = 0.
Attribution: Test hypothesis ag,(t) = predicted amplitude.
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Forced-to-Unforced Discriminant

Find the pattern T, (x,y) that maximizes detectability in models

(Jia and DelSole 2012).
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Forced Pattern

Forced—to—Unforced Discriminant
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shaded area: 95% confidence interval of forced pattern in observations.

blue line: Ensemble mean amplitude of forced pattern in models
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Project Most Predictable Pattern Onto Observations

Internal Multidecadal Pattern (IMP)

Amplitude
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66% confidence interval of IMP in observations.
Observed Atlantic Multidecadal Oscillation (AMO) index.

shaded area:
red line:

Unforced climate models naturally simulate a multi-decadal
component very similar to the AMO.

DelSole, Tippett, and Shukla (2011)
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Global Mean Sea Surface Temperature

Spatially Averaged SST on 'Well-Observed’ Grid

e Forced + IMP
e Forced Only
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Global Mean Sea Surface Temperature

Temperature Difference (K) from 1901-1950
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Summary

» Both dynamical and empirical models can skillfully predict SSTs on
multi-year time scales.

» Linear models can be decomposed into components that explain
skill.

» Unforced climate models naturally simulate a multi-decadal
component very similar to the AMO.

» Empirical model derived from dynamical models show skill of
predicting certain components of annual mean SST up to 9 years.

» Recent decadal predictions show hindcast skill in N. Atlantic.
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