Multi-Year Predictability and Prediction

Timothy DelSole

George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies, Calverton, MD

September 19, 2012

In collaboration with Michael Tippett and Liwei Jia

Why Study Multi-year Prediction?

Why Study Multi-year Prediction?

Predictions are critical tests of our understanding of the climate system.

Forced Predictability

IPCC-AR4, fig. 9.5

Evidence of Unforced Multi-year Predictability

Figure: Trajectories of leading principal component of 170m ocean temperature simulated by GFDL model; from Griffies and Bryan (1997).

Claims of Multi-Year Predictability in Stationary Models

- Latif and Barnett (1994, Science)
- Grötzner et al. (1999, J. Climate)
- Boer (2000, Climate Dyn.)
- Delworth and Mann (2000, Climate Dyn.)
- Collins (2002; Climate Dynamics)
- Collins and Sinha (2003; Geophys. Res. Letters)
- Pohlmann et al. (2004; J. Climate)
- Latif et al. (2004; J. Climate)
- ▶ Boer and Lambert (2008; Geophys. Res. Letters)
- Branstator et al. (2011; J. Climate)

Percent of Predictable Variance of Decadal Mean 2m-Temperature

Figure: Boer and Lambert (2008)

Challenges in Predicting the Real Climate System

Forced Predictability

- accurate predictions of anthropogenic and natural forcing
- accurate predictions of the response to climate forcing.

Unforced Predictability

- accurate observations of the subsurface ocean
- construct initial conditions without "shock" or "drift"
- different models imply different levels of predictability

Dynamical Predictions (Keenlyside et al. 2008)

Figure: Correlation skill in predicting observed 10-year mean surface temperature anomalies a decade in advance for 9 ICs during 1955-2005.

CMIP5 Decadal Hindcast Experiments

Skill of CMIP5 Decadal Predictions

HadCM3 (DePreSys)

MPI

from fig. 2 of Newman (2012)

Empirical Predictions

Empirical predictions avoid many of the problems faced by dynamical models. For example:

- ▶ They avoid "initialization shock" and "climate drift".
- They do not require a dynamically complete state vector.
- Empirical predictions are easier than dynamical predictions
- On decadal time scales, much predictability comes from slowly varying anomalies, which can be predicted by empirical models.
- Predictability of linear models can be diagnosed in ways that nonlinear models cannot.

Models in Empirical Decadal Prediction

persistence pointwise regression linear inverse model (LIM) multivariate linear regression constructed analogue

$$\begin{aligned} x_{t+\tau} &= x_t \\ x_{t+\tau} &= \beta_\tau x_t \\ \mathbf{x}_{t+\tau} &= \mathbf{L}^\tau \mathbf{x}_t \\ \mathbf{x}_{t+\tau} &= \mathbf{L}_\tau \mathbf{x}_t \\ \mathbf{x}_{t+\tau} &= \sum_{n \in \text{training}} w_n \mathbf{x}_{n+\tau} \end{aligned}$$

Surprise!

Standard implementations of the constructed analogue method give forecasts that are the same as linear regression.

Tippett and DelSole (2012)

Skill of Constructed Analogue for NINO3.4

EOFs	10	25	30	35
correlation (CV)	0.51	0.29	0.22	0.12
variance fraction (CV)	0.51	1.18	1.66	2.45

forecasts made in the beginning of July for the following March-May average (lead-8) of the NINO34 index during the period 1955-2003.

Predictions of Simulated SST (Hawkins et al. 2011)

- L estimated from 7 EOFs of 140 years pre-industrial control.
- CA estimated 140 years of PiCNTRL, all grid points
- 10-year prediction based on preceding 140 year training data.
- Predictability of Pacific SST limited to under two years.

Correlation Skill

Correlation skill is 1 (perfect!). MSE grows quadratically with time.

Multi-Year Predictions of Observed SST (Newman 2012)

LIM

- correlation skill of surface temperature for leads 6-9 years
- ▶ 8, 6, 6 EOFs of IndoPacific, Atlantic, land surface temperature
- ▶ L from 1yr lagged 1900-2009 HadISST data ("observations").
- Leave-10-out cross validation.

Diagnosis of LIM Predictability (Newman 2012)

$$\mathbf{x}_{t+\tau} = \mathbf{L}^{\tau} \mathbf{x}_t = \sum_k \lambda_k^{\tau} \mathbf{u}_k \left(\mathbf{v}_k^{T} \mathbf{x}_t \right)$$

Least Damped Eigenmode of LIM (Newman 2012)

"Secular trend pattern"

Second Least Damped Eigenmode of LIM (Newman 2012)

most energetic phase: Atlantic decadal variability least energetic phase: PDO when ENSO is removed

Empirical Decadal Predictions

- Newman (2007)
- Kruger and von Storch (2010)
- Hawkins et al. (2011)
- Zanna (2012)
- Newman (2012)
- DelSole, Jia, and Tippett (2012)

DelSole, Jia, and Tippett (2012)

Fit L_{τ} to pre-industrial control runs, then predict observations.

- L_{τ} is determined independently of observations (no artificial skill).
- Lots of data available (1500 years for training and verification)
- Regression model has skill only to the extent that dynamical models capture the correct space-time structure of observed variability.
- Regression model fitted to 20 EOFs from 8 CMIP5 control runs

Predictions of Observed SST (DelSole, Jia, Tippett 2012)

Figure: Skill for observed unforced N. Atlantic SST during 1910-2004.

Red: Predict independent twentieth century runs

- Blue: Predict independent pre-industrial control runs
- Green: Persistence
- Black: Predict observed unforced anomalies

Average Predictability Time (APT)

DelSole and Tippett (2009a, 2009b)

Decomposing Predictability

Find components that maximize APT (DelSole and Tippett 2009).

$$APT = 2 \int_0^\infty \left(\frac{\sigma_{clim}^2 - \sigma_{forecast}^2(\tau)}{\sigma_{clim}^2} \right) d\tau$$

Most Predictable Component in CMIP5 Pre-industrial Control Runs

Skill in Predicting the Most Predictable Component in Observations (1910-2004).

2nd and 4th Predictable Components

4th PrC

Coupling between 2nd and 4th Predictable Components

Decadal Experiments with GFDL Model (Yang et al. 2012)

Can the IMP and forced response be distinguished?

Fingerprinting Method

Fit observed annual average SST to

$$egin{array}{rll} T_{obs}(x,y,t) &=& a_{for}(t) T_{for}(x,y) &+& a_{imp}(t) T_{imp}(x,y) &+& w(x,y,t) \ Observed & Forced & Internal & Random \ Response & Pattern & Noise \end{array}$$

Detection: Test hypothesis $a_{for}(t) = 0$. Attribution: Test hypothesis $a_{for}(t) =$ predicted amplitude.

Forced-to-Unforced Discriminant

Find the pattern $T_{for}(x, y)$ that maximizes detectability in models (Jia and DelSole 2012).

Forced-to-Unforced Discriminant

Forced Pattern

shaded area: 95% confidence interval of forced pattern in observations.blue line: Ensemble mean amplitude of forced pattern in models

Project Most Predictable Pattern Onto Observations

shaded area: 66% confidence interval of IMP in observations.

red line: Observed Atlantic Multidecadal Oscillation (AMO) index.

Unforced climate models naturally simulate a multi-decadal component very similar to the AMO.

DelSole, Tippett, and Shukla (2011)

Global Mean Sea Surface Temperature

year

Global Mean Sea Surface Temperature

year

Summary

- Both dynamical and empirical models can skillfully predict SSTs on multi-year time scales.
- Linear models can be decomposed into components that explain skill.
- Unforced climate models naturally simulate a multi-decadal component very similar to the AMO.
- Empirical model derived from dynamical models show skill of predicting certain components of annual mean SST up to 9 years.
- ▶ Recent decadal predictions show hindcast skill in N. Atlantic.