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I. Motivations and Objectives

The thorough understanding of climate low frequency variability (LFV) is a
challenging problem with important practical implications for geophysical efforts
to quantify predictability, analyze error growth in dynamical models, and develop
efficient forecast methods.

We focus in this talk two sources of such LFV:

• thermohaline circulation (THC) (Stommel 61; Rooth 82; Welander 86; Salmon
86; Colin de Verdi‘ere 88; Cessi and Young 92; Quon and Ghil 92; Thual and
McWilliams 92; Dijkstra and Molemaker 97; Dijkstra and Neelin 99; Djikstra 00;
.....)

• El Nino Southern Oscillation (ENSO)
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The main technical approach is the dynamic transition theory of dissipative
dynamical systems, that we developed to identify the transition states and to
classify them both dynamically and physically:

• With this theory, all transitions of dissipative systems are classified into three
categories: 1) continuous (Type-I), 2) catastrophic (Type-II), and 3) random
(Type-III).

• Key philosophy of the theory is to search for the complete set of transition
states, represented by a local attractor.

• With this philosophy, the theory is developed under close links to the physics.
In return the theory is applied to the physical problems, leading to numerous
physical predictions:

T. Ma & S. Wang, Phase Transition Dynamics in Nonlinear Sciences, Springer-
Verlag, to appear, 2012, 679pp.
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Examples:

dx1
dt

= λx1 − x31 + o(|x|3),

dx2
dt

= λx2 − x32 + o(|x|3)

The system undergoes a dynamic transition at λ = 0:
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(1)
ẋ1 = λx1 + x21 + x1x2 − 10x31,

ẋ2 = λx2 − 2x1x2 − x22 − 10x32.

(a) (b) (c)
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Consider the Bénard convection on a nondim. domain Ω = D × (0, 1) with a set

of physically sound BCs. Let Rayleigh number be R = gα(T̄0 − T̄1)h3/(κν) .

T=T 0

_

x  =h

x  =0

3

3

T=T1

_

Thm (Ma & W., 04): As R crosses the first critical Rayleigh number Rc, the
system always undergoes a continuous transition to an attractor ΣR ' Sm−1,
where m is the multiplicity of Rc.

In addition, ΣR attracts every bounded set of H \Γ, where Γ is the stable manifold
of the basic solution.
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Thm (Ma & W., 07): Consider the 3D Bénard convection in Ω = (0, L1) ×
(0, L2)× (0, 1) with free top-bottom and periodic horizontal BC’s, and with

k21
L2
1

+
k22
L2
2

=
1

8
for some k1, k2 ∈ Z.

Then

ΣR =

{
S5 if L2 =

√
k2 − 1L1, k = 2, 3, · · · ,

S3 otherwise.
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(joint with H. Dijkstra, T. Sengul, 2011): For the surface tension driven convection,
the system can undergo a random transition as the Marangoni number crosses the
threshold:

H1H2
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(a) λ < λc

yI

yJ

(b) λ = λc
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(c) λ > λc
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∂u

∂t
+ (u · ∇)u = Pr (−∇p+ ∆u)

∂θ

∂t
+ (u · ∇) θ = w + ∆θ

∇ · u = 0

(2)

BC: Free-Slip on the lateral of Ω = (0, L1)× (0, L2)× (0, 1) and

u = v = w = θ = 0 at z = 0

∂ (u, v)

∂z
+ λ∇Hθ = w =

∂θ

∂z
+ Biθ = 0 at z = 1

Bi ≥ 0 the Biot number

λ =
ξ0γT (θ0 − θ1)d2

ρ0νκ
> 0 the Marangoni number

ξ = ξ0(1− γTθ) surface tension on the top
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II. Dynamic Transitions for the Boussinesq Model

∂u

∂t
= Pr (∆u−∇p) + Pr

[
RT − sign(S0 − S1)R̃S

]
~k − (u · ∇)u

∂T

∂t
= ∆T + u3 − (u · ∇)T,

∂S

∂t
= Le ∆S + sign(S0 − S1)u3 − (u · ∇)S

div u = 0,

(3)

with Free Slip Boundary Conditions in Ω = (0, L1)× (0, L2)× (0, 1)

R =
αTg(T0 − T1)h3

κTν
the thermal Rayleigh number,

R̃ =
αSg(S0 − S1)h

3

κTν
the saline Rayleigh number,

Pr =
ν

κT
, Le =

κS
κT

the Prandtl and the Lewis numbers.
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Main Results (Ma-Wang, 07, 08, 09): Let

K = sign(1− Le )

[
Le2

1− Le

(
1 +

1

Pr

)
σc − R̃

]
,(4)

σc = min
(j,k)∈Z2,j,k≥0,
j2+k2 6=0,l≥1

π4(j2L−21 + k2L−22 + 1)3

j2L−21 + k2L−22

=
π4(j21L

−2
1 + k21L

−2
2 + 1)3

j21L
−2
1 + k21L

−2
2

.(5)

for some integer pair (j1, k1) such that j1 ≥ 0, k1 ≥ 0, j21 + k21 6= 0.

Double diffusive flow analysis is also joint with Chun-Hsiung Hsia.
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Case K > 0: The first dynamic transition of the system occurs as the R-Rayleigh

number σ = R − Le−1R̃ crosses the critical number σc, leading to multiple
equilibria:

• If b1 = σc − 1−Le2
Le3

R̃ > 0, the transition is of continuous type as shown.

• If b1 < 0, then the transition is of jump type, leading to the existence of
metastable stables, saddle-node bifurcations and the hysteresis associated with
it.
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Case K < 0: the first transition of the system occurs as the C-Rayleigh number

η = R− Pr + Le

Pr + 1
R̃

crosses its first critical value

ηc =
(Pr +Le )(1 + Le )

Pr
σc,

leading to spatiotemporal oscillations (periodic solutions).

The transition can be either continuous or jump, dictated by the sign of a
nondimensional parameter b2.
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III. Scaling Law

For the classical Bénard convection with free-slip BC, the critical temperature
gradient is given by

(6) 4Tc '
27κTνπ

4

4gαTh3
→

{
large if h→ 0,

small if h→∞.
critical horizontal scale =

√
2h.

The resolution of this discrepancy is carried out by adding to the momentum eqs
turbulent friction terms as F = (σ0u1, σ0u2, σ1u3).

Based on our analysis to ensure the independence of 4Tc on the vertical scale h,
we propose the following scaling law:

σ0 = C0h
2, σ1 = C1h

2 with C0 and C1 independent of h

δ0 = C0h
4/ν, δ1 = C1h

4/ν (nondim form with vert length scaled to 1)
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IV. Dynamic Transitions for An Idealized THC Model
h = 4× 103m, Lc = 104m, αT = 2.1× 10−4 K−1

Pr = 8, Le = 10−2, αS ∼= 0.92× 10−3(psu)−1

ν = 1.1× 10−6 m2s−1, κT = 1.4× 10−7m2s−1

R =
gαT (T0 − T1)

κTν
h3 = 0.86× 1021(T0 − T1)[◦C−1],

R̃ =
gαS(S0 − S1)

κTν
h3 = 3.75× 1021(S0 − S1)(psu)−1.

To fit the length scale of the THC, we need to consider the Boussinesq Equation
with added friction term in its nondim form with vertical length scaled to 1:

Model: BE + (δ0u1, δ0u2, δ1u3) with δ0 = 1.17× 108, δ1 = 2.33× 1023
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Results

1. Deduced Critical Parameters:

α2
c = π2

[
δ0
δ1

]1/2
= 2.24× 10−7 critical wave number

Lc =
π

αc
=

[
δ1
δ0

]1/4
= 0.67× 104 critical horizontal length scale

σc = (π2 + α2
c)δ1 +

π4δ0
α2
c

= 2.33× 1024 critical R-Rayleigh number

ηc = (1 + Le )σc critical C-Rayleigh number

σ = R− Le−1R̃, η = R− R̃ R- and C-Rayleigh numbers
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2. Case R̃ < 2.35× 1020: The system undergoes a dynamic transition at σc to a
local attractor consisting of multiple equilibria and their unstable manifolds:

• If R̃ < 2.33×1018, the transition is continuous. In fact, the problem bifurcates to
two stable steady state solutions ψσ1 and ψσ2 for σ > σc with basin of attractions
of U1 and U2.

In addition, the initial value ψ̃ ∈ Ui, then there is a time t0 such that as t > t0,
the flow structure of the solution ψ(t, ψ0) is topologically equivalent to:

1

x

x

L1

1

3
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v± =

(
±Cβ1/2(σ)L1 sin

πx1
L1

cosπx3, 0,∓Cβ1/2(σ) cos
πx1
L1

sinπx3

)
T± = T0 + (T1 − T0)x3 ∓

Cβ1/2(σ)

α2
c + π2

cos
πx1
L1

sinπx3,

S± = S0 + (S1 − S0)x3 ∓
sign(S0 − S1)Cβ

1/2

Le (α2
c + π2)

cos
πx1
L1

sinπx3,

β(σ) = k(σ − σc) + o(|σ − σc|)

vmax = CL1κh
−1β1/2 = 0.64× 10−7β1/2(σ)m/s,

v3
v1

= 1.56× 10−4

• If 2.33 × 1018 < R̃ < 2.35 × 1020, the transition is jump, and there are two
saddle-node bifurcations from (ψ∗1, σ

∗) and (ψ∗2, σ
∗) with σ∗ < σc.
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3. Case R̃ > 2.35× 1020: The system undergoes a dynamic transition at ηc to an
attractor consisting of spatiotemporal oscillations (Hopf bifurcation).

• For 2.35 × 1020 < R̃ < 2.35 × 1024, the transition is continuous, leading to a
stable periodic solution. The period is about 1.1× 106 s. NOT realistic.

• For R̃ > 2/35× 1024, the transition is jump.
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Conclusions

• A nondimensional parameter K is introduced to distinguish the multiple steady
state and oscillatory spatiotemporal patterns, which play an important role in
understanding the mechanism of THC in different oceanic basins.

• For both the multiple equilibria and periodic solutions transitions, both Type-I
(continuous) and Type-II (jump) transitions can occur, depending respectively
on the signs of two computable nondimensional parameters b1 and b2.

• A convection scale law is introduced, providing a method to introduce proper
friction terms in the model in order to derive the correct circulation length scale.

• The analysis of the idealized model with the proper friction terms shows that the
THC appears to be associated with the continuous transitions to stable multiple
equilibria.
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V. New Metastable State Oscillation Theory of ENSO

The Walker Circulation

The Pacific Ocean

Warm Cool

West East

150 W 180 150 E 120 E 80 E
Darwin, Australia Tahiti Lima, Peru

longitude

• The behavior of the Walker cell is a key factor giving rise to the ENSO.

• When the convective activity weakens or reverses, an El Niño phase takes place,
causing the ocean surface to be warmer than average, reducing or terminating
the upwelling of cold water.

• A particularly strong Walker circulation causes a La Niña event, resulting in
cooler sea-surface temperature (SST) due to stronger upwelling.
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• SOI gives a simple measure of the strength and phase of the Southern Oscillation:
In the El Niño phase, the SOI is negative or zero, when in La Niña phase,
the SOI is strongly positive, and in the normal state the SOI is small and
positive.
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• There have been extensive studies in recent years, following the pioneering work
of (Dijkstra 00, Ghil 00, Jin 96, Jin-Neelin-Ghil 96,
Sardeshmukh-Compo-Penland 00, Zebiak-Cane 87, ...).

• An interesting current debate is whether ENSO is best modeled as a stochastic
or chaotic system - linear and noise-forced, or nonlinear oscillatory and unstable
system (G. Philander and A. Fedorov 03)?

• A careful fundamental level examination of the problem is crucial.
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Consider the basic atmospheric model over the tropics:

H

R*
R

R

R

R

+

_

C

ε

ψ

ψ

ψ
∼

El Nino phase

La Nina phase

Normal phase

Rayleign number 

Mechanism of ENSO: ENSO is a self-organizing and self-excitation system, with
two highly coupled oscillatory processes:

• the oscillation between the two metastable warm (El Nino phase) and cold events
(La Nina phase), and

• the spatiotemporal oscillation of the sea surface temperature (SST) field.
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The interplay between these two processes

• gives rises the climate variability associated with ENSO,

• leads to both the random and deterministic features of ENSO, and

• defines a natural feedback mechanism, driving the sporadic oscillation of ENSO.

The randomness is closely related to the uncertainty/fluctuations of the initial
data between the narrow basins of attractions of the corresponding metastable
events.

The deterministic feature is represented by a deterministic coupled atmospheric
and oceanic model predicting the basins of attraction and the sea-surface
temperature (SST).
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VI. Remarks
The theory has been applied to a wide range of problems in nonlinear sciences,
leading to a number of physical predictions:

Equilibrium phase transitions: Gas-liquid transition (the nature and theory of
the critical point), ferromagnetism (asymmetry principle of fluctuations), binary
systems (existence of 2nd-order transitions), superconductivity (characterization
of 1st and 2nd order transitions), and superfluidity (prediction of a new superfluid
phase)

Classical Fluid Dynamics: Bénard convection (richness of the transients),
Taylor problem, and Taylor-Couette-Poiseuille flows (mechanism of the formation
of the Taylor vortices)

Geophysical Fluid Dynamics and Climate Dynamics: double-diffusive flows,
thermohaline circulation (scaling law and criteria for flow regimes), ENSO (a
new metastable states oscillation theory of ENSO), ....
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Biology and chemistry: Chemotaxis, Belosov-Zhabotinsky chemical reaction

Pattern formation: formation and mechanism of different patterns in Marengoni
flow (with H. Dijkstra and T. Sengul), Magnetohydrodynamic convection (with
T. Sengul), diblock copolymer melts (Cahn-Hilliard model with long range
repulsive interactions) (with H. Liu, T. Sengul, Pingwen Zhang).
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