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Human and economic cost of hurricane
Katrina (2005) or TC Nargis (2008), growing
population in coastal regions

=> detection/attribution of observed
changes:need to know how TC activity will
response to human-induced climate
change and distinguish forced changes
from natural variability

-Projections of future hurricane activity
will the projected increase in global
temperature lead to more frequent and/or
more intense tropical storms and
hurricanes?

PDI is proportional to the time integral of the
cube of the surface wind speeds accumulated
across all storms over their entire life cycles.



Outline

1) Atlantic hurricanes in observations: Is there a detectable

anthropogenic influence on hurricane activity?
=> DETECTION and ATTRIBUTION

2) Atlantic hurricanes in models: What are the projected changes of
future (21st century) hurricane activity?
=> CENTENNIAL PROJECTIONS

3) What are the main sources of uncertainty in these projections?
=> UNCERTAINTIES

4) Is there any skill in predicting hurricane variability beyond seasonal
time scales?
=> DECADAL PREDICTIONS




Is there any evidence of hurricane activity change in the observed
record?
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The tropical storm counts record shows a secular increase. But imperfect sampling
in the pre-satellite era. Can the trend reflect the increased observational capabilities?



Is there any evidence of hurricane activity change in the observed
record?
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Only storms far from landfalling regions have increased.
Ship tracks have changed in density and location over time => Long term changes
In hurricane activity spatially heterogeneous and data are biased



Is there any evidence of hurricane activity change in the observed
record?
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Atlantic tropical storm and hurricane counts so not show Vecchi and Knutson (2008, 20171)
N x B 3 5 Landsea et al. (2010)

significant increasing trends after adjustment for estimated

missing storms



Is there any evidence of hurricane activity change in the observed
record?

Normalized Tropical Atlantic Indices
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Is there any evidence of hurricane activity change in the observed
record?

Normalized Tropical Atlantic Indices
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Premature to conclude any ?hanges_based on present record Vecchi and Knutson (2008, 2011)
Use of paleo data could clarify the picture Landsea et al. (2009)




Is there any evidence of hurricane activity change in the observed
record?

Normalized Tropical Atlantic Indices
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% Change in Power Dissipation Index (relative to 1981-2000)

% Change in Power Dissipation Index (relative to 1981-2000)

Percent Change in Atlantic Tropical Cyclone Power Dissipation Index: Observed and Projected

Hurricane frequency projections for two SST indices
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Atlantic hurricane activity
(PDI) is correlated with local
Atlantic SST (top) and with
Atlantic SST relative to
tropical mean SST (bottom).

However, these two SST
measures behave very
differently in greenhouse
warming scenarios. Local
Atlantic SST warms
strongly, but Atlantic SST
relative to tropical mean
SST does not.

Since Pl is largely controlled
by departure of local SST
change from tropical-mean
SST change it is better to use
this measure for hurricane
projections

Vecchi and Sodden (2007), Vecchi et al.
(2008), Swanson (2008)



Significant improvement in simulating past variability of Atlantic
hurricane activity in dynamical models

Tropical storms (annual)
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Statistical-dynamical downscaling model

Uses NCEP reanalysis
(Emanuel et al. 2008)

18km regional downscaling model

Uses NCEP reanalysis
(Knutson et al. 2008)

100km SST-forced AGCM
(LaRow et al. 2008)

50km SST-forced AGCM
Uses observed SST, sea-ice, and
radiative forcing

(Zhao et al. 2009)
Knutson et al. (2010)



Projections of future hurricane activity:
control climatology of intensities

m=m Model ensemble
®=® Observed

ZETAC model (zhao et al. 2009)

1/6 degree (18 km) grid, 45 vertical levels
non hydrostatic, resolved convection
Lin Microphysics, Mellor-Yamada BL
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Boundary forcing: Observed SST + NCEP 4X
daily reanalyses

Large scale (wave 0-2) interior spectral nudging
of all variables toward NCEP with a timescale of
36 hrs,

iInteractive land model,

time step 30s

CPU requirements: about 300 CPU hr/day or
750,000 CPU hrs for 27 three-month seasons.
Typically Aug 1-Oct 31 simulations (+ 3-day
spin-up) Zhao et al. (2009, 2010), Bender et al. (2010)




Projections of future hurricane activity:
control climatology of intensities

m=m Model ensemble
®=® Observed

ZETAC model (zhao et al. 2009)

1/6 degree (18 km) grid, 45 vertical levels
non hydrostatic, resolved convection
Lin Microphysics, Mellor-Yamada BL
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Boundary forcing: Observed SST + NCEP 4X
daily reanalyses

Large scale (wave 0-2) interior spectral nudging
of all variables toward NCEP with a timescale of
36 hrs,

iInteractive land model,

time step 30s

CPU requirements: about 300 CPU hr/day or
750,000 CPU hrs for 27 three-month seasons.
Typically Aug 1-Oct 31 simulations (+ 3-day
spin-up) Zhao et al. (2009, 2010), Bender et al. (2010)

Since the 18-km grid ZETAC model fails to simulate wind speeds greater than ~47 m/s,
a second downscaling step is necessary. Use GFDL Hurricane Prediction System
(operational at NCEP and Navy) to re-simulate all individual storms from ZETAC
(control and warm climates). So far only done for the Atlantic




Projection of hurricane
downscaling method

r B >

2) Regional modelp
change in hurricane cotints
from climate model gutput.

3) Hurricane model projects
change in most intense hurricanes

1) Global climate model projects from regional model output.

large-scale climate changes from
changes in greenhouse gases and
aerosols.




Hurricane Katrina Coupled Model Forecast - comrewce
Aug 29 19:00 UTC (67h)

Nested moveable mesh follows motion of tropical cyclone with grid spacing 9km.
=> Each TC from ZETAC downscaled in the hurricane models. 1) identify time max
intensity in ZETAC then back up 3 days from that to begin 5-day hurricane model
integration
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Projections of future hurricane activity: CMIP3 results

Climate Change Projection

E
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Overall decrease of the number of
tropical storms and hurricanes in a
warmer climate

Found for the ensemble mean and the
individual climate models

However, the rarer most intense
simulated hurricanes occur up to 3
times as often in the warmer climate
and increase for 3 of 4 individual
models

Bender et al. (2010)



Projections of future hurricane activity: CMIP3 results

Projected Changes in Atlantic Hurricane Frequency over 21st Century
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3 changes on
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N ,
-5
Trop. Storm+ Cat.2+3 Cat.4+5
Cat. 1 Hurr. Hurricane Hurricane

Adapted from Bender et al. (2010)

Colored bars show changes for the18 model CMIP3 ensemble (27 seasons); dots
show range of changes across 4 individual CMIP models (13 seasons).



frequency

Projections of future hurricane activity: adding CMIP5 results

North Atlantic Tropical Storms (1980-2006) North Atlantic Tropical Storms (1980-2006)
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60 0.30
55 a) @9 atl NCEP.bams/GFDLe C) @9 atl NCEP.bams/GFDLe
®—® atl A1B_ensI8/GFDLe ®—® atl A1B_ens18/GFDLe
50 @@ atl CMIP5 LATE/GFDLe 0.25 ©-® atl CMIP5 LATE/GFDLe

&
o
S

normalized frequency
=)
ok
n

0.10
0.05
0.00
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
max wind speed (m/s) max wind speed (m/s)

CMIP5 vs CMIP3 robust results in response to anthropogenic warming

-Fewer Atl tropical storms (-27% in CMIP3, -23% in CMIPS5), fewer hurricanes (-17% in
CMIP3;-19% in CMIP5)

-increased frequency of most intense hurricanes (cat 4-5), +39% in CMIP5 (not
statistically significant), +86% in CMIP3 (in 3/10 ind. models)

-Projected change of mean intensity positive in both CMIP3 and CMIP5 (not shown)
-No landfall information

Knutson et al. (2012, submitteq)



Projections of future hurricane activity: increased rainfall

associated with hurricanes

Rainfall rates (ASO, mm/day)
Control climate Warmer climate
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Projections of future hurricane activity: increased rainfall

associated with hurricanes
Rainfall rates (ASO, mm/day)
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How consistent are these projections among models?
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Assessing the uncertainty of these projections

Tropical Atl. SST
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Variability: Chaotic variations independent of radiative forcing changes
Response: How climate will respond to changing GHGs
Forcing: How GHGs will change in the future

Villarini and Veecchi (2012)
after Hawkins and Sutton (2009)




Decadal predictions: a initial/lboundary value problem

Decadal climate variations arise from

-Internal variability of the climate system (e.g. slow changes in the ocean)

-Response of the climate system to external forcing changes (greenhouse gases,

aerosols, etc.)

Observing systems

Assimilation systems i

\

Models

Changing radiative forcing

Weather and seasonal predictions
(initial value problem)

Centennial projections
(boundary value problem)

——

Decadal
predictions

Unified system for predictions and projections from seasonal to decadal to

centennial time scales



GFDL decadal prediction system/Experimental design

Most climate projections focused solely on the response to radiative forcing changes.
Key question: Can we produce better predictions if we use information describing
the initial state of the climate? Part of CMIP5 and IPCC AR5

Model:
Currently use of CM2.1 model (2°atm, 1°ocean, Delworth et al. 2006)

Initial conditions:

Ensemble Coupled Data Assimilation (ECDA) reanalysis (Zhang et al. 2007)
. Atmosphere NCEP reanalysis (T,u,v,ps)

.Ocean XBT,CTD, satellites, Argo

.Radiative forcing GHG, solar, aerosols,volcanoes

Initialized runs
10 members ensemble, starting every year from 1960-2012, run for 10yrs (total of more

than 5000 model years). Use observed estimates of radiative forcings 1960-2005,
RCP4.5 thereafter

Uninitialized runs:

10 members ensemble, from 1861-2040. Use observed estimates of radiative forcings
1960-2005, RCP4.5 thereafter

Model outputs available at
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp Rosati et al. (2012), Yang et al. (2012)


http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp

Statistical model for hurricane predictions

Statistical model trained on a suite of of HIRAM-C180 experiments exploring different
possible climates
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50% confidence range
75% confidence range
90% confidence range

Use two covariates as predictors:

-Tropical Atlantic SST MDR (positive)

-Tropical mean SST (negative)

Poisson regression model trained on HIRAM-C180
gives the rate of occurrence:

A 8 ea+bSSTMDR —cSST rrop

N
o

o
l

D
| Sl R

Annual Hurricane Counts

»
l

Fitted model able to reproduce observations and
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Vecchi et al. (2011)



Statistical model for hurricane predictions

[—?I—

Run Hi-Res AGCM in many Build statistical model of Use climate model to
different climates. the response of forecast future values of
Count storms. hurricanes in AGCM Atlantic and Tropical SST

Apply stat
model to
Predicted

Schematic of the GFDL Hybrid i
Hurricane Forecast System
(HyHUFS) W—

Make Prediction of

Full PDF of Hurricane

http://gfdl.noaa.gov/hyhufs Activity

Courtesy Gabriel Vecchi



Results: retrospective multi-year predictions of hurricane frequency
in two CMIP5 models

5-yr predictions
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Retrospective predictions encouraging: qualitatively better predictions than uninitialized

Vecchi, Msadek and coauthors (2012, submitted)



Results: retrospective multi-year predictions of hurricane frequency
in two CMIP5 models

9-yr predictions
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Retrospective predictions encouraging: qualitatively better predictions than uninitialized

Vecchi, Msadek and coauthors (2012, submitted)



Results: retrospective multi-year predictions of hurricane frequency
in two CMIPS5 models

9-yr predictions
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Retrospective predictions encouraging: qualitatively better predictions than uninitialized

Spurious increase after 2003: change in observational sampling induced changes in
lead-dependent climatology

Vecchi, Msadek and coauthors (2012, submitted)



Results: retrospective multi-year predictions of hurricane frequency
in two CMIP5 models

Anomaly Correlations
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Retrospective predictions encouraging, but small sample size limits confidence
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Highest skill for the two-model average

Results consistent with smith et al. (2010)...except the confidence interval
Vecchi, Msadek and coauthors (2012, submitted)



Results: retrospective multi-year predictions of hurricane frequency
in two CMIP5 models

Mean Squared Skill Score (MSSS)
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Reduction of the conditional bias that is large in the uninitialized predictions

Vecchi, Msadek and coauthors (2012, submitted)



5-Year Averaged North Atlantic Hurricanes per Year

Where does the skill come from?
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Nominal improvement results from better representation of Atlantic MDR
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5-Year Averaged North Atlantic Hurricanes per Year

Where does the skill come from?
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Where does the skill come from?
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Where does the skill come from?

Anomaly correlations with the mid 90°’s shift “removed”

rsist

Anomaly correlation coefficient to observed counts

CM2.1 Initialized DePreSys-PPE Initialized
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Anomaly correlation coefficient to observed counts

The correlations drop substantially
=> decadal signal dominated by
the trend that arises from mid 90s
change point

=>Implications for future “real”
predictions: won’t be as good as
retrospective predictions unless a
change point of similar character
happens AND we can predict it

Vecchi, Msadek and coauthors (2012, submitted)



Is the change in mid 90s in hurricane frequency related to the SPG
climate shift? Remote influence on hurricanes suggested by smith et al (2010)

ECDA OHC anomalies relative to 1971-1990 climatology

- Observed hurricane counts
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Abrupt warming of the North Atlantic subpolar gyre observed in 1995 linked to MOC
response to persistent NAO forcing, predictable in several CMIP5 experiments.
If hurricanes shift linked to that it could affect their predictability
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MOC shows some predictability on decadal time scales
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MOC shows some predictability on decadal time scales
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Hurricane index has some predictability when MOC does
|dealized Predictions of MOC

Msadek, Dixon, Delworth and Hurlin (2010) “Unpredictable MOC” Case
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Conclusions

-It is premature to conclude that human activity--and particularly greenhouse
warming--has already had a detectable impact on tropical cyclone activity.

-Projected GFDL model hurricane response to global warming: likely fewer tropical
storms and hurricanes but increase in the frequency of most intense hurricanes. Also
higher rainfall rate => strong societal impact

This change may not be detectable for many decades due to high noise levels

No information about landfalling storms yet

-Confidence relies in the models’ ability to successfully reproduce past variability but
remaining caveats include model limitations (clouds, aerosols, intense hurricane
simulations) and dependence on climate change conditions for downscaling

Internal variability and response to forcing (e.g aerosols) are also large sources of
uncertainty.

-The relative warming of each basin wrt tropical mean will determine future response
of TCs. Improving the quality of regional SST projections in coupled GCMs is key to
reduce uncertainty of hurricane projections. Challenging because it involves cloud
feedbacks and climate response to aerosols

-Initialized multi-year predictions are encouraging but the short record limits our
confidence. The mid 90’s shift is the source of observed and simulated trend over 20th
century; predicting it and understanding its origin are key for future predictions.
Changes in observational system make predictions challenging
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CIVIPS AiIstorical Simulations
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CMIPS5 historical experiments
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G & the recently observed
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internal variability
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Zetac Regional Model Downscaling:

Tropical Storm Formation
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Two GFDL models reproduce the interannual
variability of Atlantic hurricane counts; trend In
NCEP reanalysis forced ZETAC model is too large

Atlantic Hurricanes (1980-2008): HIRAM-Simulated vs. Observed

Correlation: ens-mean = 0.69; Linear trends: +0.10 storms/yr (model ens mean)
+0.13 storms/yr (observed).

ens-range = [+0.06, 0.15] storms/yr (model ens range)
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The HIRAM 50-km grid model simulated hurricane count changes (interannual and A1B
scenario) are consistent with expectation based on tropical Atlantic SST minus global tropical
mean SST (Ta -Tg).
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Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009)
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MDR SST

'f_;c 1

5 ‘ /‘ Atlantic hurricane activity (PDI) is correlated

%o- ! with local Atlantic SST (top) and with Atlantic
S| ( { \ ‘ ' " w | SST relative to tropical mean SST (bottom).

These two SST measures behave very
L differently in greenhouse warming scenarios.
3 , , , | | Local Atlantic SST warms strongly, but

(C’ Atlantic SST relative to tropical mean SST

2r !\:E))IR Normal SST o } does nOt-
( '/

%1 \ |

go /‘ ‘ \ | \

\\ iviy

K1 \ "\ v \

V

‘3 1 1 1 1 1
1950 1960 1970 1980 1990 2000 2010
Year Source: Swanson, G-cubed, 2008




GCM Projections of 21t Century Changes in Large-Scale Environment

Based on 21 global climate models
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Model projections SST change show tropics warming. However, projections of Pl change - a theoretical upper-bound on
hurricane intensity - show areas of both increase and decrease, since Pl is largely controlled by departure of local SST change
from tropical-mean SST change.

These mixed changes in Pl suggest that model projections of future hurricane activity will depend on details of SST change.
The sensitivity of Pl to relative SST suggest that internal variabiity more efficient at modifying cyclones than uniform warming.
Source: Vecchi and Soden (2007, Nature)



Cat 4 & 5 Hurricanes (1980-2006)
atl NCEP.bams/GFDL - 14 storms
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atl_A1B _ens18/GFDL - 28 storms
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atl_CMIPS_LATE/GFDL - 19 storms
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Late 21st century projections of

Atlantic Intense Hurricanes

shift toward Gulf of Mexico in CMIP5 but caution
needed to assess any regional changes

Comparison of track maps for cat 4-5 storms

Knutson et al. 2012



