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Predictability is a fundamental issue in  
Weather and climate prediction 

Uncertainties of prediction comes from : 

 initial errors and model errors (particularly, the 
parameter errors in the numerical models).  

     Question:  

What kind of initial or/and parameter errors 
result in significant  forecast uncertainties? 
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Linear singular vector (LSV)     Lorenz ?         



Conditional nonlinear optimal perturbation (CNOP)   
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CNOP,                     ,  is the optimal combined mode of initial and 
parametric perturbations 

is the departure from the basic state caused 
by the initial and parametric perturbations   

Objective function 

(Mu et al., 2010.) 

 



Mu et al., 2003 

Mu et al., 2010. 
 

Model parameter error 
that yields the largest 

prediction error  
in perfect initial 

condition scenario. 

Initial  
perturbation 

(CNOP-I) 

Model  
parameter  

perturbation 
(CNOP-P) 

CNOP 

Initial error that has the 
 largest effect on prediction 
in perfect model scenario 

Two special cases of CNOP 
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0u  CNOP-I 

0|| ||u  Constraint condition 

A natural generalization of LSV in nonlinear regime 

      CNOP-I: 

Objective function 



Physics of CNOP-I 

Optimal precursor 
of a weather or climate 

event 

Optimally growing 
initial errors 

Mu et al., 2003 
Duan et al., 2004 

Mu et al., 2003 
Mu et al., 2007 





Applications of CNOP-I to the studies of weather and 
climate predictabilities  

Double-gyre ocean 
circulation (NPG; 

Terwisscha Van Scheltinga 
and Dijkstra)  

CNOP-I 

Optimal precursors & 
nonlinear behavior of 
ENSO decaying phase; 
(JGR; AR;  Duan and 

Mu) 

Spring predictability barrier 
for ENSO (JGR; GRL; AAS; 

Mu et al.; Duan et al.) 

Decadal variability and 
ENSO asymmetry (JGR; 

Duan and Mu) 

Target observation for 
tropical cyclone (Mu et al. 

2009, MWR) 

THC (JPO; JGR; 
Mu, Sun, Wu)  

Blocking (JAS; Mu 
and Jiang)  

Ensemble forecast 
(Sci. Chin.; Mu and 

Jiang)  
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：CNOP-P 

：nonlinear propagator 

：constraint condition of parameters || ||p 

p

TM

   CNOP-P: 

Physics of CNOP-P  
CNOP-P  represents the model parameter error that has the  
largest effect on prediction and describes a kind of important 
model error. 



Computation of CNOPs 

Computation of CNOP  
CNOP-I and CNOP-P 

Constrained 
optimization

problem 

High-efficient  
optimization algorithm  



Constrained minimization problem 
Algorithms: SPG2; L-BFGS; etc.    

Gradients 
( adjoint ,ensemble ) 

Computation of CNOP  
CNOP-I and CNOP-P 





2.Studies of “spring predictability barrier”  
for El Nino events 



12 dynamical models and 8 statistical models 

Current status of ENSO forecast skill 



ENSO predictions are still of large uncertainties! 

“Spring predictability barrier” (SPB):  
 

a well-known characteristic of ENSO forecast; 
severely affect ENSO forecast. 
 
What is the SPB? 



A significant SPB: 
During the boreal spring time , the ENSO forecast skill of most of 
the climate models (but not all) declines dramatically (Webster and Yang, 
1992; Latif et al., 1994). 

Luo, J.-J., S. Masson, S. Behera, and T. Yamagata 2008: Extended ENSO predictions using a fully 

coupled ocean-atmosphere model. J. Climate, 21(1), 84-93. 



(ii) Properties of the SPB 
 

    Samelson and Tziperman [2001]:  
    the SPB is an inherent characteristic of ENSO forecast; 
 

However, 
 

    Chen et al. [1995, 2004]: the SPB can be reduced      
   through improving initialization. 
 
 

     



Reference States: El Nino events in Zebiak-Cane model 
 

(a) weak warm events

(b) strong warm events

WR1
WR2
WR3
WR4

SR4
SR3
SR2
SR1

spring spring 

Growth-phase prediction Decaying-phase prediction 

2.1. Season-dependent predictability caused by    
     initial errors 



Start month: July in year (-1) 
Growth-phase predictions 

JAS OND JFM AMJ ENiño-3 
WR1 2.171 1.109 3.564 4.510 -1.796 
WR2 1.338 2.496 -0.941 4.096 1.422 
WR3 2.107 2.850 1.530 3.017 1.781 
WR4 2.588 3.166 1.811 2.678 1.826 
SR1 1.819 1.028 3.133 4.774 -1.794 
SR2 1.050 0.318 1.535 5.321 -1.603 
SR3 2.206 3.014 3.420 5.577 -2.242 
SR4 2.552 3.410 0.163 -0.683 0.802 

Largest Prediction errors  
of Nino-3 SSTA 

Seasonal growth rates of prediction error caused by 
CNOP-I errors 



Start month: October in year (-1) 

Growth phase 

  OND JFM AMJ JAS E-Nino3 

WR1
Jan 2.397  1.888  3.678  3.620  2.008  

WR1
Apr 0.933  -0.045  3.219  4.973  1.639  

WR1
Jul 1.415  1.615  4.281  4.327  2.207  

WR1
Oct 0.985  1.392  3.294  2.783  1.496  

SR1
Jan 1.525  2.018  8.187  5.176  -2.880  

SR1
Apr 1.103  1.342  5.315  6.476  -2.693  

SR1
Jul 1.710  2.186  5.722  3.177  -2.110  

SR1
Oct 1.776  1.678  5.757  4.901  -2.337  

Largest Prediction errors  
of Nino-3 SSTA 



  JFM AMJ JAS OND ENiño-3 

WR1 1.445 2.882 4.995 0.678 1.740 

WR2 1.132 3.409 5.358 4.352 -2.573 

WR3 1.010 4.242 5.507 1.396 2.218 

WR4 0.902 3.945 7.017 3.103 -2.762 

SR1 1.301 5.739 8.716 1.802 -3.147 

SR2 1.348 3.922 7.685 4.808 -3.316 

SR3 1.629 4.488 7.511 2.879 -3.005 

SR4 1.844 4.504 7.724 1.837 -2.694 

Start month: January in year (0) 

Growth phase 

Largest Prediction errors  
of Nino-3 SSTA 



Growth-phase predictions: CNOP-type initial errors 
have a obvious season-dependent evolution of prediction 
errors and cause the largest prediction errors.  
 
The decaying-phase predictions have similar results. 

CNOP-type initial errors can cause a significant SPB  
for El Nino events 



Main experiential parameters in the ZC model and their 
physics and given values 

Atmospheric 
equation 

Temperature  
equation 

Subsurface  
temperature 

Wind forcing 

3. Season-dependent predictability caused by    
     model errors? 



CNOP-P causes the largest prediction error. 
 
Can the CNOP-P error superimposed on these 
parameters cause a significant SPB? 

(1) Seasonal growth rate of the prediction error caused 
by CNOP-P errors 
 
(2) The prediction error of Nino-3 SSTA caused by 
CNOP-P errors 



El Nino JAS OND JFM AMJ ENiño-3  

WR1 0.098 0.024 0.082 0.182 0.002 
WR2 0.533 0.187 1.204 0.433 0.242 

WR3 0.01 0.083 0.099 0.122 0.037 

WR4 0.245 0.301 0.096 0.062 0.104 

SR1 0.393 0.383 0.432 0.371 0.164 

SR2 0.354 0.153 0.26 0.669 0.262 

SR3 0.07 0.154 0.182 0.446 0.158 

SR4 0.106 0.12 0.103 0.276 -0.095 

Start month: July in year (-1) 
Growth-phase predictions 

Small 
prediction 

errors 



El Nino OND JFM AMJ JAS ENiño-3  

WR1 0.117 0.187 0.287 0.313 0.067 
WR2 0.179 0.175 0.232 0.171 0.028 

WR3 0.027 0.049 0.136 0.247 0.085 

WR4 0.04 0.061 0.182 0.303 0.111 

SR1 0.183 0.286 0.811 0.877 -0.213 

SR2 0.054 0.008 0.257 0.783 -0.178 

SR3 0.127 0.145 0.437 0.691 -0.253 

SR4 0.054 0.07 0.255 0.734 -0.143 

Start month: October in year (-1) 

Small 
prediction 

errors 



El Nino JFM AMJ JAS OND ENiño-3  

WR1 0.055 0.23 0.463 0.416 0.203 
WR2 0.032 0.165 0.307 0.258 -0.135 

WR3 0.034 0.122 0.263 0.234 0.121 

WR4 0.049 0.107 0.304 0.374 0.158 

SR1 0.028 0.203 0.618 0.739 0.29 

SR2 0.023 0.32 0.431 0.36 0.187 

SR3 0.121 0.451 0.873 0.497 0.33 

SR4 0.075 0.265 0.643 0.165 -0.156 

Start month: January in year (0) 

Small 
prediction 

errors 



For the growth-phase predictions, the CNOP-P errors 
have obvious season-dependent evolutions, but the error 
growth rate in each season are very small and the 
prediction errors caused by CNOP-P errors are 
negligible.  
 
 

The decaying-phase predictions have similar results 
 
 
 

CNOP-P does not cause a significant SPB and could not 
be the dominant source of the uncertainties that cause a 
significant SPB. 



Prediction errors caused by the CNOP-I, CNOP-P, and the 
combined mode of them 

The prediction errors caused by CNOP-I errors are trivially different from  
those caused by the combined mode of CNOP-I and CNOP-P. 
The parameter errors in the ZC model may have a negligible effect  on ENSO  
prediction. 



Initial error may be the 
dominant source of the 

uncertainties that cause a 
significant SPB 

CNOP-I errors: 
a significant SPB 

CNOP-P errors 
Fail to cause  

a significant SPB 

The combined mode  
of CNOP-I and CNOP-P 

 a significant SPB 

A significant SPB:  
related to initial error 

CNOP-I error causes the largest prediction errors and has an 
obvious season-dependent evolution, being most likely to cause 
a significant SPB! 



4. Dependence of SPB on initial error patterns 

Growth-phase predictions Decaying-phase predictions 

Prediction errors caused by 
CNOP and LSV 

Seasonal growth rates of initial errors 

Nonlinearity increases the uncertainties  
of the predictions through spring 



Examples of random initial errors 



 One case.  Other cases have similar results. 

El Nino JAS OND JFM AMJ E-Nino3 

WR1
Jan -0.211  0.038  0.065  0.068  0.069  

SR1
Jan -0.249  -0.077  0.077  0.299  -0.099  

WR1
Apr -0.249  -0.034  0.002  0.052  0.034  

SR1
Apr -0.216  0.044  0.112  0.196  0.105  

WR1
Jul -0.216  -0.012  0.036  0.187  -0.083  

SR1
Jul -0.257  0.001  -0.003  0.089  -0.055  

WR1
Oct -0.210  0.057  -0.058  -0.022  -0.016  

SR1
Oct -0.273  -0.046  -0.038  -0.012  -0.002  

Start month: July in year (-1) 

Random initial errors do not cause the SPB. 

Small prediction errors  
of Nino-3 SSTA 



5. Spatial characteristic of the initial errors that cause a 
significant SPB 

Cluster analysis method. Similarity coefficient (128 CNOP-I 

errors)： 
(a)   type-1 CNOP error

(b)   type-2 CNOP error

。                SSTA component (  C ) Themocline depth anomaly component ( m )

Positive error of Nino-3 indices 

Negative error of Nino-3 indices 



   Evolutions of two types of CNOP-I errors 

3-month lead

6-month lead

9-month lead

12-month lead

0-month lead

Positive error of Nino-3 indices Negative error of Nino-3 indices 

Type-1 CNOP-I error Type-2 CNOP-I error 



CNOP-type errors: 
a significant SPB 

LSV-type errors: 
less significant SPB 

Random initial errors 
and parameter erros: 
fail to cause a SPB 

A significant SPB: particular pattern of initial error 



3  Decadal Variabilities of THC 

 The understanding of the mechanisms of  
variabilities is far from mature due to lack of 
 the observations  and theoretical researches. 

Image courtesy Argonne National Laboratory. 

THC is an important component of 
the climate system.  

Data from 
http://www.cdc.noaa.gov/Correlatio
n/amon.us.long.data 

The decadal and interdecadal  
variabilities of THC in the Atlantic is  
thought to be responsible for AMO. 
So it becomes a hot topic. 

1) rare observations on ocean;     2) low signal-noise ratio.  

http://www.anl.gov/OPA/frontiers/d8ee2.html


THC 
Decadal 

Variability 

Passive 
mechanism 

Recovering 
process after 

being 
disturbed 

Sun et al, 2005 
Sevellec et al., 2009 
Alexander et al., 2009 

Stochastic 
external 
forcing 

Timmerman et al,.2000 
Velez-Belchi et al., 2001 

Active 
mechanism  

Instability of 
the dynamics 

of ocean 
Chen et al.,1995 

Dijkstra et al., 2005 

Instability of 
coupled 
climate 
systems 

Jungclaus et al, 2005 

The existed mechanisms 



The Coupled Atmosphere-Ocean Model 

Figure 1: The coupled atmosphere-ocean boxes model (after 
Lohmann, et al., 1996) 



The Model Equation 

The evolution of the perturbation : 

x = (T′, S′) represents the perturbations on the 
basic state of temperature and salinity.  
         is inner product of two vectors. 
 A is the parameter matrix. 
 

(1) 

,



' b,x ( ' ')c T S     

is dimensionless flow rate. 

If there is more fresh water entering the North 
Atlantic Ocean, the perturbation has        <0 
and       <0, which is called fresh perturbation. '

If there is less fresh water entering the North 
Atlantic Ocean, the perturbation has       >0 
and      >0,which is called salinity 

perturbation. 
'

'S

'S

Where 



Decadal variation of THC 

• The passive variabilities of THC is investigated 
by superposing initial perturbations to the 
thermohaline circulation. 
 

•  Firstly we choose a positive number     to 
measure the recovery of a perturbation. 
 

• We use CNOPs to define recovering time       , 
which is the time period the CNOP with initial 
constraint condition δ takes to recover to      . 

t








Decadal variation of THC 

t
Figure 5: The recovering time        vs magnitude δ of initial 

perturbation for      = 0.01. Dashed: linear results, solid: nonlinear 
results . 





Decadal variation of THC 

Figure 8: The plot of recovering time       vs. initial azimuth angle θ. 
The initial magnitude of perturbations vary (a) from δ = 0.02 to δ = 
0.05, (b) from δ = 0.1 to δ = 0.5, (c) from δ = 0.6 to δ = 0.79. 

t




The recovery time saturation of 
salinity flux perturbation 

 
 

 Decadal variation of THC  
 
 
 
 

Salinity flux perturbation: 
•      >0.6 , recovering time  40 years 
• The recovery time saturation  

 

Fresh water perturbation : 
•      =0.6, recovering time  53 years 
•     =0.7, recovering time  67 years 
•     =0.79, recovering time 96  years 
•     =0.791, the breaking down of present  
        THC. 













 

 

 

The mechanism of saturation 
and asymmetric evolution 

 
Nonlinear feedback 
 

• If there is no nonlinear effect , there 
is no saturation phenomenon. 
 

• The evolution of initial perturbation 
will be symmetric one. 



Summary of THC by box model 

• CNOP leads to transient growth of THC and 
can causes decadal variations of THC. 

• CNOP distinguish fresh water perturbation 
from salinity ones .The former is more sensitive 
than the later. 

• Nonlinear feedback : an explanation to the 
sensitivity of fresh water perturbation and to 
the    saturation of recovering time of salinity 
perturbation. 



4.2 Results of OGCM:  
      Model and  its configuratio1    
  
  THCM:  a 3D ocean general circulation model, 

which is a fully implicit model and can 
produce the tangent linear  and adjoint matrix. 

 
 Domain: [286W, 350W] * [10N,74N]; without 

geometry. 
 
  Resolution: 4o*4o*250m 
  Uniform basin depth: 4000m 
  Time step: from 0.7-14 days 
 
 
 
 

 



Steady/basic state 
MOC (Sv) ZOC (Sv) Zonal mean density (kg/m3) 

SST(℃) SSS(psu) Upper layer velocities averaged 
over the upper 1500 m (m/s) 



Cost function: 

Optimization configuration 

2

cos
topNorth East

South West L

J V d dz d  
 

  
 

   ’

Optimal time: 10yr 

By these configuration, we want to seek a kind of 
perturbations, which could weaken THC the most for a 
delay of 10yr. 

The constraints of initial perturbations: 2' 3.2SSS 

(Alexander and Monahan 2009) 

L : the depth of streamfunction maximum, L=-1500m 

ψ: latitude 
θ: longitude 

v’: meridional velocity anomaly. 
North，South，East，West，Top : boundaries. 



Optimal initial SSS perturbations 

unit: psu 

Minimum: -0.48 psu, 
corresponding to the amplitude of 
GSA (Great Salinity Anomaly) 
events. 
 
Strong meridional gradient and 
weak zonal gradient. 



Time slices of MOC anomaly the perturbation induced  

The MOC decreased 
and then increased. 
The period is 50 yr. 



Time slices of ZOC anomaly the perturbation induced  

The ZOC decreased, 
increased and then 
decreased. 
 
The period is also 50 yr. 
 
The phase leads that of 
MOC. 



Time slices of SSTA the perturbation induced  

The variations of 
SST show a signal 
of AMO 

1 Basin-scale warming and 
cooling. 

2 The period is 50yr. 
3 Westward propagating of 

SST anomaly 
 



Time slices of surface velocities anomaly    

Westward propagating 
of velocities anomaly 



Time slices of vertical mean density anomaly   

Westward propagating 
of density anomaly 



Time slices of SSS anomaly 

Westward propagating 
of SSS anomaly 



Variations induced by initial perturbations 

1 THC is weakened by 4 
Sv(25% of the intensity of 
steady state) 
 

2 These perturbations have 
induced decadal variations, 
with period of 50yr. 
 

3 The nonlinear terms is 
important. 



Variations induced by initial perturbations after 
some nonlinear terms are linearized 

1 From 0 to 4yr,  the nonlinear term of 
parameterization of convection (mix 
for simplicity)  is important. 

2 From 4 to 8yr, the nonlinear terms of 
zonal density advection and mix are 
important. 

3 From 8 to 15yr, the nonlinear terms of 
zonal density advection and mix are 
still important. 

4 The nonlinear terms in momentum 
equations are not important. 

To isolate the influence of each nonlinear term on the intensity of THC, we have linearized 
each nonlinear term, respectively. 



         Summary  of THC by OGCM 
 
1     The initial perturbations of SSS can induce the decadal variabilities of THC. 
 
        And cause an amplitude of the variations of 4 Sv ( 25% of the 
       basic state) with the period of 50 yr. 
 
2      The physics of oscillations involves the interaction of zonal density gradient  
        anomaly,   meridional density gradient anomaly, zoc and moc anomaly,  
        according to the thermal  wind relation. 
 
3      The perturbations obtained by LSV are similar to those by CNOP, except a  
       stronger westward  extending of positive perturbations in the south of the region.  
       Compared to the perturbations  by LSV, those by CNOP can induce stronger 
       decadal variations of THC, which indicate that CNOP approach is a more  
       effective tool to investigate the cause of the decadal variabilities   of THC. 



Thank you! 



Model dependent?  

 

Localized region of CNOP-I errors: target 
observation;  



In calculating CNOP-P, the constraint bounds are determined 
to make the model ENSO events maintaining the irregular 
oscillation similar to observed ENSO. 

(a)

(b)

时间 （年）



Constraint bound of nine parameters  



E.4  Seasonal growth rate of prediction errors caused  
      by random error on model parameters 

El Nino JAS OND JFM AMJ ENiño-3  

WR1 0.012  0.013  0.020  0.034  0.014  
WR2 0.034  0.469  0.754  0.444  0.164  

WR3 0.067  0.009  0.000  0.049  0.016  

WR4 0.032  0.002  -0.016  0.004  0.000  

SR1 0.001  0.007  0.010  0.024  -0.007  

SR2 0.005  0.004  0.007  0.014  -0.004  

SR3 0.005  0.002  0.004  0.004  -0.002  

SR4 0.044  0.037  -0.010  -0.022  0.005  

One case: Start month July in year(-1) 



The first type of  
CNOP-I error 

Optimal precursor  
for El Nino event 

The second type of  
CNOP-I error 

Optimal precursor  
for La Nina event 

Similarity coefficient 

 0.74 

0.55 



(a)

(b)

The optimal precursors for El Nino and La Nina 
(the initial anomalies that evolve into El Nino and La Nina events most probably)  

 
 

CNOP-I and local CNOP-I type initial anomalies 

The optimal precursor for El Nino 

The optimal precursor for La Nina 



E. Seasonal growth rates of   
     prediction errors caused by   
     model errors 



||)(|| tuN


)(t  CNOP-I 

      One year is divided into four quarters.  
       
     Computing the slope      of the curve  )(t

at different quarter. 
)0(0   Error increasing (decreasing) 

|| Error increasing  
or decreasing 





2( ) max || ( ) || , 1, ,
i i i

cnop
a p b

J p T i n
 

  

:   constraint condition of model 
parameters i i ia p b 



'T

：optimization time interval, 12 months 
 

  
：prediction error of Nino-3 SSTA 

Cost function related to CNOP-P in the ZC model 

cnopp :   CNOP-P 

E.1 Seasonal growth rates of prediction errors caused   
     by CNOP-P error 



The cost function related to the CNOP-I  

0 2
0 2|| ||

( ) max || '( ) ||
u

J u T







 ：optimization time interval, 12 months 
 
：prediction error of SSTA 
 
:   non-dimensional initial error of SSTA  
    and thermocline depth anomaly.  
                 
:   constraint condition of initial errors  

'T

0u

0 2|| ||u 



D. Perfect model predictability  
    experiments 



D. Perfect model predictability experiments:    
     investigating the characteristic of the initial errors   
     that cause a significant SPB along the thinking of  
     hindcast experiments by performing perfect model  
     predictability experiments 

CNOP pattern describes a characteristic of the initial  
errors that cause a significant SPB.  
 
In realistic predictions, CNOP is not computed.  
 
Whether or not there exist such initial errors in realistic  
predictions, at least in hindcast experiments? 



D.1 Experiment strategy 
 
Integrating ZC model for 1000 model years 
 
Divide the 1000 years into ten time intervals 
(0-99, 100-199, …, 900-999) 
 
Choose two strong and two weak El Nino events 
A total of 40 El Nino events. 
 
12 ones with initial warming time in Jan-Apr; 
28 ones in Sep-Nov. 



Predicting these El Nino events with a leading time 12 months 

Representatives of model El Nino events. Left column: Two strong El Nino  
events with initial warming time October and January; Right column: as in  
left column except for weak El Nino events. 



Initial uncertainties: scaling the model SSTA and  
thermocline depth anomaly in each month of the 4  
years preceding each El Nino year  
 
48 initial error patterns, 48 predictions of each El Nino  
events. 



D.2 Seasonal growth rates of initial uncertainties 

The initial errors that cause a significant SPB can be divided into two types: one  
type (type-I) causes a negative prediction error of Nino-3 SSTA; the other (type-II) 
causes a positive prediction error. In the table are eight representatives of the  
initial errors. 

For the strong El Nino with initial warming time October 



For the strong El Nino with initial warming time January 



Representatives of Type-I and Type-II errors for strong El Nino 

There are other types of errors that yield a less significant SPB or 
do not cause a SPB.  



＋ 
Type-I error 

－ 

－ ＋ 
Type-II error 

Composite of SSTA component of type-I and –II errors for 20 
strong El Nino events 



For the weak El Nino with initial warming time October 

The initial error that cause a significant SPB for weak  
El Nino events can also be classified into two types.  



For the weak El Nino with initial warming time January 

The initial error that cause a significant SPB for weak  
El Nino events can also be classified into two types.  



Composite of SSTA of type-I and –II errors for 40 El Nino 
events (including 20 strong ones and 20 weak ones) 

＋ 
Type-I error 

－ 

－ ＋ 
Type-II error 



Evolutions of El Nino, type-I and type-II errors 

Evolution of El Nino Evolution of type-I error Evolution of type-II error 



El Nino-Southern Oscillation (ENSO): a prominent 
climate phenomenon in the coupled ocean-atmospheric  
system of tropical Pacific 
 
 
Significant progresses in ENSO theory and prediction 
(Tropical Ocean Global Atmosphere; TOGA program) 
 
Walker 1924; Bjerknes, 1969; Zebiak and Cane, 1987; Webster and Yang, 1992; 
Chen et al., 1996; Moore and Kleeman, 1996; Jin et al., 1997; Neelin et al., 1998;  
Wang, 2001; Samlson and Tziperman, 2002;An and Jin, 2004; Mu et al., 2007a,b;  
Duan et al., 2006;2008;2009; Tang et al., 2008; 
 
……and so on 



A significant SPB 
 
From the perspective of error growth, a significant SPB  
can be characterized by two aspects:  
 

(1) the ENSO forecasting has a large prediction error; 
 

in particular,  
 

(2) a prominent error growth occurs in the spring when  
the predictions are made before the spring, that is, a season- 
dependent evolution of the prediction errors. 
(Mu et al., 2007a,b; Duan et al., 2009; Yu et al., 2009).   



3. Seasonal growth rate of the prediction errors caused  
      by the combined mode of CNOP-I and CNOP-P errors 

El Nino JAS OND JFM AMJ ENiño-3  

WR1 0.852 1.39 3.966 1.75 -0.996 
WR2 1.854 2.935 -0.38 8.084 2.527 

WR3 2.197 3.238 1.823 3.665 2.032 

WR4 2.52 3.535 2.031 3.411 2.056 

SR1 1.317 1.53 3.672 4.689 -1.874 

SR2 0.921 0.613 1.607 5.051 -1.512 

SR3 2.013 3.077 3.52 5.432 -2.214 

SR4 1.914 2.918 0.855 0.711 1.072 

Start month：July in year(-1) 

Growth-phase predictions Large 
prediction 

errors 



El Nino OND JFM AMJ JAS ENiño-3  

WR1 0.874 2.046 5.662 7.826 3.015 
WR2 1.276 1.159 5.92 9.249 3.273 

WR3 1.499 1.806 4.789 5.048 2.485 

WR4 1.126 1.721 4.428 3.928 1.992 

SR1 1.891 3.342 7.508 3.561 -2.827 

SR2 0.966 1.575 5.724 7.39 -2.95 

SR3 1.578 2.484 5.907 3.289 -2.209 

SR4 1.271 1.813 4.74 4.099 -2.063 

Start month：October in year(-1) 

Large 
prediction 

errors 



El Nino JFM AMJ JAS OND ENiño-3  

WR1 1.013 4.581 8.407 2.589 3.056 
WR2 1.038 3.165 4.637 4.077 -2.356 

WR3 1.098 4.801 6.395 1.336 2.445 

WR4 0.787 3.091 5.672 2.406 -2.19 

SR1 0.958 5.327 7.054 0.762 -2.501 

SR2 1.215 3.434 6.835 4.573 -2.991 

SR3 1.408 4.276 6.907 2.996 -2.828 

SR4 1.667 4.196 7.09 2.68 -2.776 

Large 
prediction 

errors 
Start month：January in year(0) 



For the growth-phase predictions, the combined mode 
of CNOP-I and CNOP-P errors have obvious season-
dependent evolutions. Furthermore, they cause a large 
prediction error. 
 
The decaying-phase predictions have similar results. 
 
The combined mode causes a significant SPB. 



Many works have investigated the SPB for ENSO events.  

Debates remain concerning  
 
(i) its causes: 
 

The weakest zonal SST gradient during spring (Webster and Yang, 1992; 

Lau and Yang, 1996).  
 

The weakest ocean-atmosphere coupling during spring (Webster, 
1995) 
 

Small SST signals in spring (Chen et al., 1995) 

 
…… and so on. 



There is an urgent need to further address the  
problems related to the SPB for ENSO events. 

Understanding of SPB can be gained by studying 
the initial error growth (Moore and Kleeman, 1996; Samelson and 
Tziperman, 2001; Mu et al., 2007a, b). 



The prediction uncertainties: initial errors and 
model errors.  
 

Questions:  
1.Can initial errors cause a significant SPB ? 

2. How about model errors? . Which kind of errors play the 
dominant role in yielding a significant SPB, initial errors or 
model errors? 



Decadal variation of THC 

Figure 7: The evolution of (a) temperature T′, (b) salinity S′, (c) 
magnitude J of  CNOPs.  The solid, dashed, dash doted curve 
represent δ = 0.6, 0.7, and 0.8, respectively. 



• In our work, we suppose that external forcing (fresh 
water or heat flux)  changes the variables( SST or 
Sea Surface Salinity: SSS) of the ocean from the 
steady state, while it’s the recovery processes of 
these variables that causes decadal variability of 
THC. 
 

We employed two models, a simple box model and a 3D 
ocean general circulation model. 

Flux Per. 



1      THCM:  a 3D ocean general circulation model, which is a fully 
implicit model and can produce the tangent linear  and adjoint matrix. 
2      Domain: [286W, 350W] * [10N,74N]; without geometry. 
3      Resolution: 4

o
*4

o
*250m 

4 Uniform basin depth: 4000m 
5 Time step: from 0.7-14 days 

4.2 Results of OGCM:  
      Model and  its configuration 

;p pR R

T S

T S

SST SST SSS SSS
F F

 

 
 

Restoring Boundary for T and S 

After the model reaches the steady state, 
 switch to flux boundary.  

;F R F R

T T S SF F F F 

SSTp,SSSp are the prescribed  SST and SSS, and  τ T , τ S 
are restoring scales of SST and SSS, respectively. 

Without wind forcing 
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Optimal initial SSS perturbations by LSV 

Perturbations obtained by LSV are 
similar to those by CNOP, except a 
stronger westward extending of 
positive perturbations in the mid-
latitude.  

unit: psu 

CNOP 

LSV 

To compare with the previous work,we obtained the optimal perturbations by LSV. 
The configuration of LSV is the same with that of CNOP, except the nonlinear 
model is replaced by tangent linear model.   



Variations induced by initial perturbations  

Compared to the 
perturbations by LSV, those 
by CNOP can induce 
stronger decadal variations of 
THC, that is, stronger 
negative anomalies (about 1 
Sv) of streamfunction 
maximum in the negative 
phase and stronger positive 
anomalies (about 0.2 Sv) in 
the positive phase. 



The physics of oscillation 
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Modified from Raa and Dijkstra, 2002 

These four indices have been standardized  

Thermal wind relation 



The evolution equation of ψ′= b,x

' '2b,AXd

dt
   (4) 

(x) b,AXL 

' ' '2

0 0
( ) (0) (x)

t t

t L d d        (5) 

where 

Integrating the above equation, we find 

The Mechanism of Nonlinear Feedback  

For Thermohaline Circulation 



Nonlinear Feedback (TH) 
Enhancing 

Positive 

damping 

Negative  



Predictability is a fundamental issue in  
Weather and climate prediction 
 
What is the predictability? Not a unified definition. 
 
Predictability study: the uncertainty of forecast results 
(Mu et al., 2004) 
 

(i) The analysis of the factors and mechanisms that yield these  
       uncertainties 
(ii) The search for methods and approaches to reduce these  
      uncertainties. 
 


