

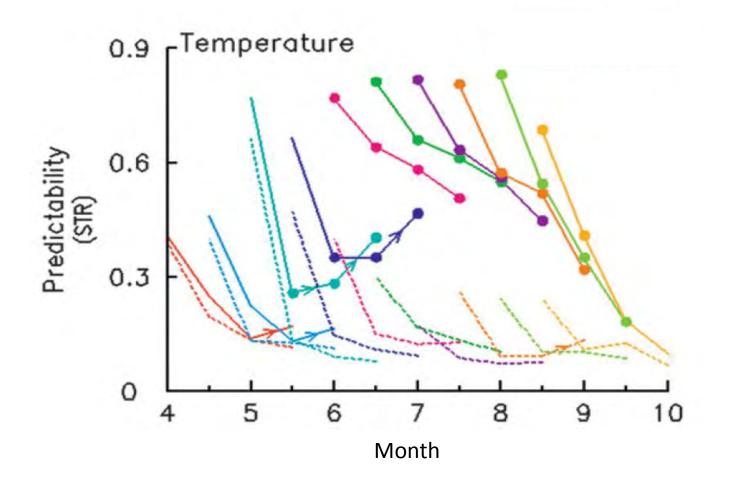
Multi-year Predictability of Temperature and Precipitation Over Land

Liwei Jia and Timothy DelSole

Center for Ocean-Land-Atmosphere Studies, USA

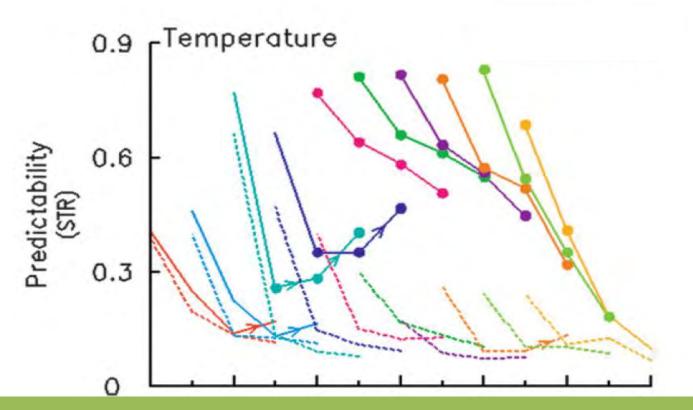
NTU, Taiwan, 2012

Predictability of Land Surface Temperature



Guo, Dirmeyer and DelSole, GRL, 2012

Predictability of Land Surface Temperature



Can we find components over land that are predictable beyond seasons?

Guo, Dirmeyer and DelSole, GRL, 2012

Observed Land Surface Temperature Change



Global land-surface temperature anomalies, relative to 1961-1990 mean (IPCC AR4).

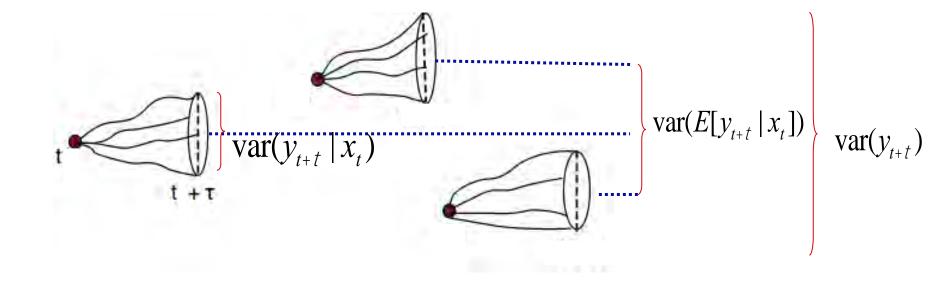
Previous Studies on Predictability

Decadal predictability over oceans (Boer, 2004; Pohlmann et al., 2004; Collins et al., 2006, DelSole et al., 2011).

• Multi-year predictability over land on continental scales (Jia and DelSole, 2011).

Assess land predictability in new CMIP5 dataset.

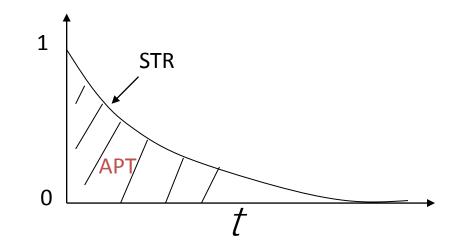
Illustration of Unforced Predictability



Average Predictability Time

Measure of predictability: $STR(t) = \frac{var(E[y_{t+t} | x_t])}{var(y_{t+t})}$

$$APT = 2 \,\dot{0}_0^{4} STR(t) dt$$



DelSole and Tippett, J. Atmos. Sci., 2009

Maximizing APT

 We seek a linear combination of variables that maximizes APT

$$2\dot{0}_{0}^{4}S_{signal}q = /S_{total}q$$

- Eigenvalues give the APT values.
- Time series of a single component is $q^T y$
- Regression pattern of a component is $p = S_{total}q$
- Yields a complete, uncorrelated set of components, ordered by their contribution to APT.

Derive APT with One Ensemble Member

- > Project data on the first few principal components.
- Construct a linear regression model.

$$y(t+t) = L_t x(t) + e(t)$$

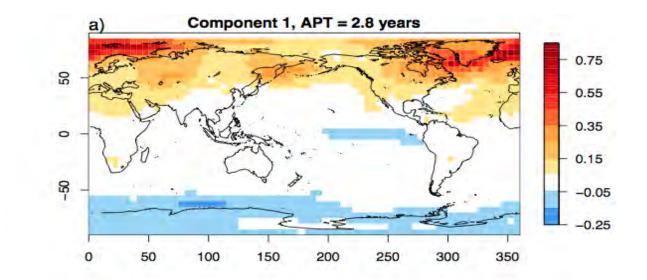
Derive multiple correlation for each component from regression model.

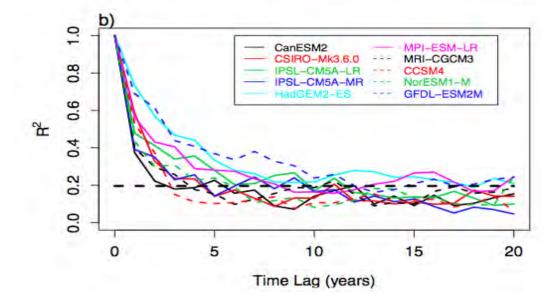
$$APT = 2 \,\dot{0}_0^{4} R^2(t) dt$$

Model Data

- CMIP5 pre-industrial control runs with fixed external forcing.
- Reject model outliers in trends and variances.
- 10 models were selected.
- Model grids are interpolated to common grid (72 x 36).
- Last 300 years of annual mean temperature, precipitation.
- First 150 years as training, the second 150 years as verification.
- Selected model runs are pooled to create a multi-model data of 1500 years for training and verification separately.
- 20 PCs, 20-year time lags.

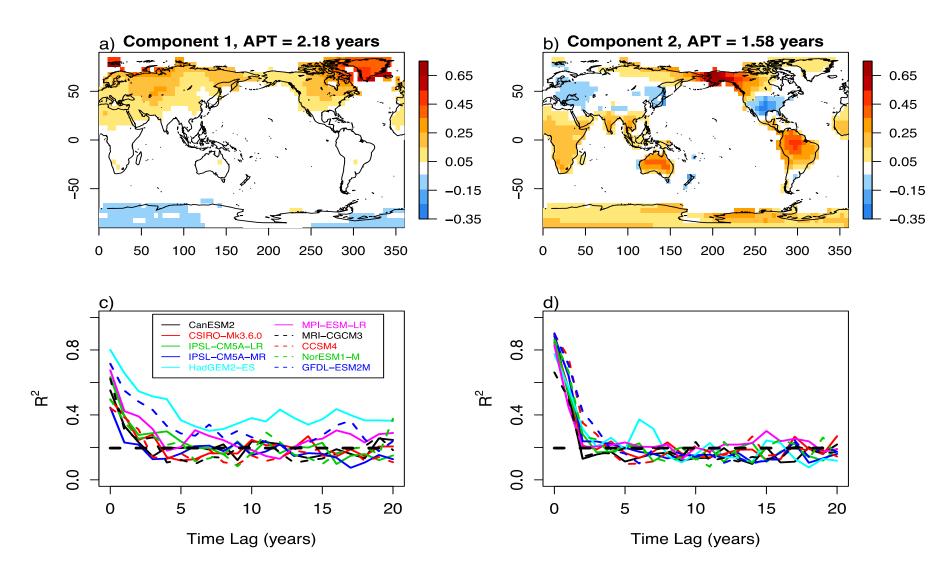
Most Predictable Component of SAT





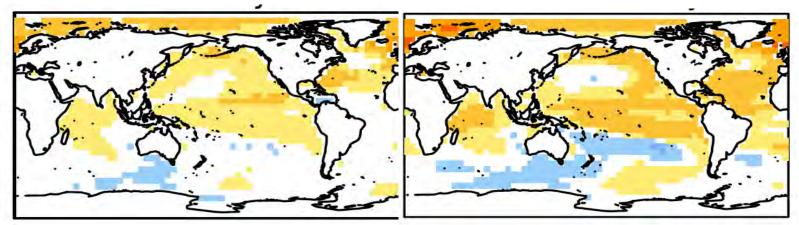
Jia and DelSole, GRL, 2012

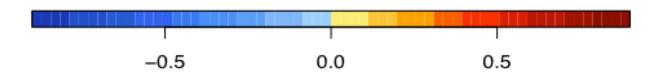
Predictable Components of SAT over Land



Ocean leads 3 yrs

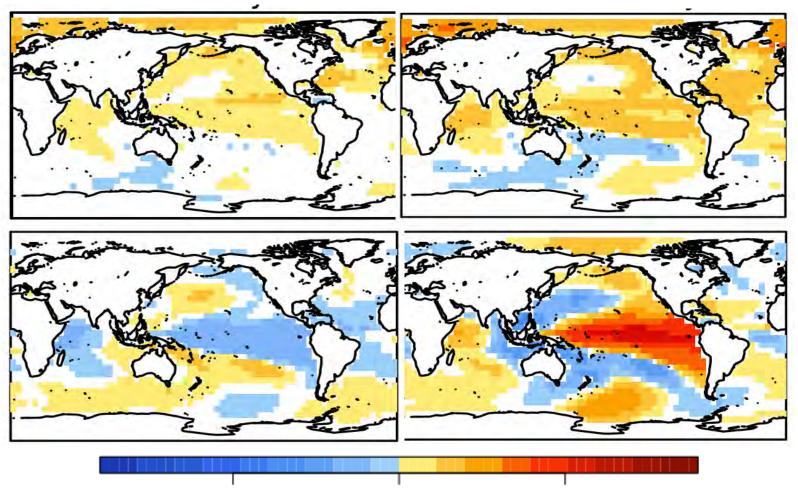
Ocean leads 1 yr





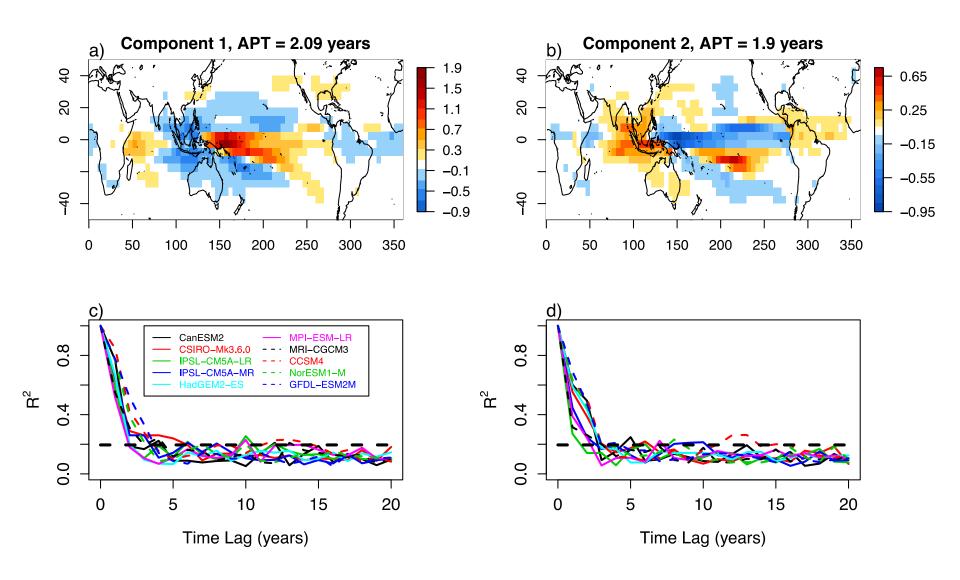
Ocean leads 3 yrs

Ocean leads 1 yr

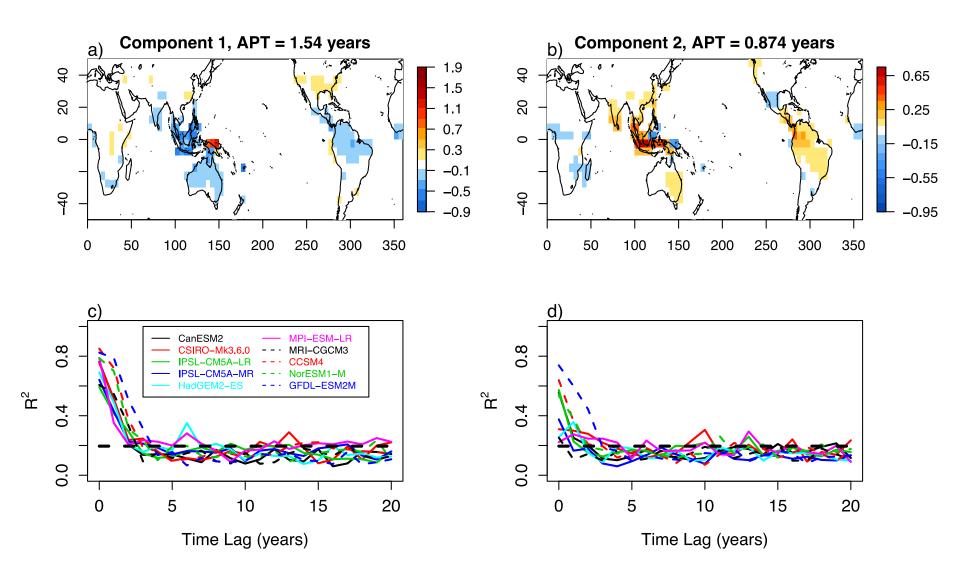


-0.5 0.0 0.5

Predictable Components of Precipitation

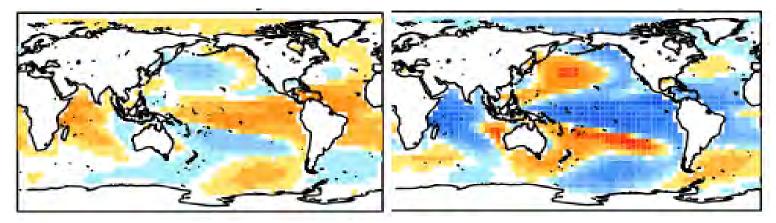


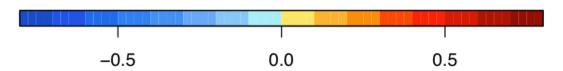
Predictable Components of Land Precipitation



Ocean leads 2 yrs

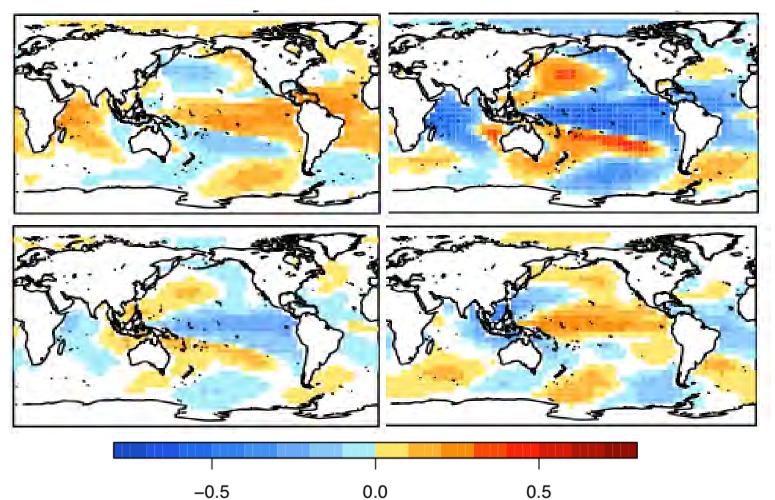
Ocean leads 0 yr





Ocean leads 2 yrs

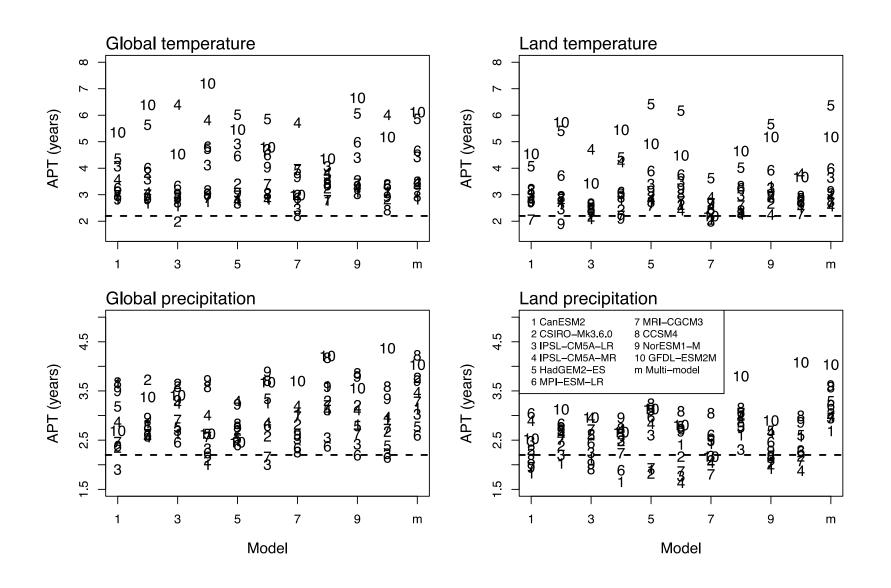
Ocean leads 0 yr



Summary

- Explicitly identified space-time structure of predictable temperature and precipitation over land on multi-year scales.
- The leading 2 components of land temperature are predictable for 2-20 years depending on model.
- Predictability of land temperature arises from the persistence of temperature over oceans and ENSO.
- The leading 2 components of land precipitation are predictable for 2-4 years, and are correlated with ENSO.

Sensitivity of Predictability to Models

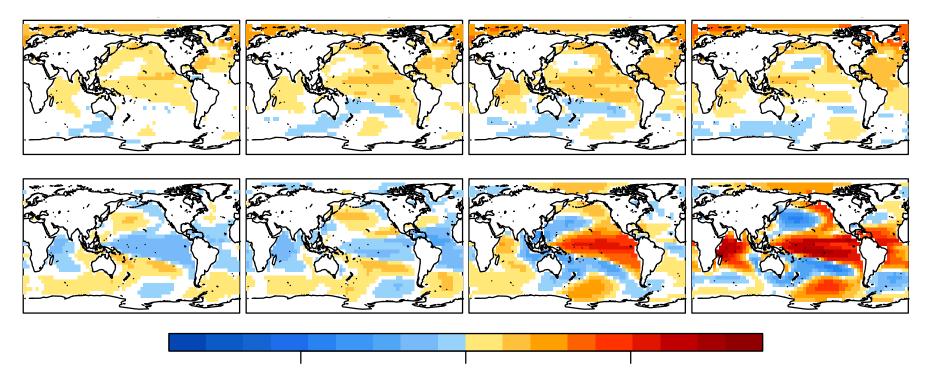


CanESM2	Canadian Centre for Climate Modelling and Analysis
CSIRO-Mk3.6.0	Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence (Australia)
IPSL-CM5A-LR	Institut Pierre-Simon Laplace (France)
IPSL-CM5A-MR	Institut Pierre-Simon Laplace (France)
HadGEM2-ES	Met Office Hadley Centre (UK)
MPI-ESM-LR	Max Planck Institute for Meteorology (MPI-M) (Germany)
MRI-CGCM3	Meteorological Research Institute (Japan)
CCSM4	National Center for Atmospheric Research (USA)
NorESM1-M	Norwegian Climate Centre
GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory (USA)

Drivers for Multi-year variability

- Internal dynamics of climate system (e.g., air-sea interactions, slowly-varying climate components).
 - unforced predictability
- External forcing (e.g. CO2, volcano).
 - forced predictability

Ocean leads 3 yrs Ocean leads 2 yrs Ocean leads 1 yr Ocean leads 0 yr



-0.5 0.0 0.5

