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Predictability of Land Surface Temperature 

Month        Can we find components over land that are 
                  predictable beyond seasons?  

Guo, Dirmeyer and DelSole, GRL, 2012  



Observed Land Surface Temperature Change 

Global land-surface temperature anomalies, relative to 1961-1990 
mean (IPCC AR4).  

 



Previous Studies on Predictability  

• Decadal predictability over oceans (Boer, 
2004; Pohlmann et al., 2004; Collins et al., 
2006, DelSole et al., 2011). 

 

• Multi-year predictability over land on 
continental scales (Jia and DelSole, 2011).  

 

 Assess land predictability in new CMIP5 dataset.  
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Illustration of Unforced Predictability 



Average Predictability Time 

Measure of predictability:   
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DelSole and Tippett, J. Atmos. Sci., 2009  



Maximizing APT 

• We seek a linear combination of variables that 
maximizes APT 
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• Eigenvalues give the APT values. 

• Time series of a single component is  

• Regression pattern of a component is   

• Yields a complete, uncorrelated set of 
components, ordered by their contribution to APT. 
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Derive APT with One Ensemble Member 

 Project data on the first few principal components. 
 Construct a linear regression model.  

 
 
 Derive multiple correlation for each component from 

regression model.  
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Model Data 

• CMIP5 pre-industrial control runs with fixed external forcing. 

• Reject model outliers in trends and variances. 

• 10 models were selected. 

• Model grids are interpolated to common grid (72 x 36). 

 

• Last 300 years of annual mean temperature, precipitation. 

• First 150 years as training, the second 150 years as 
verification. 

• Selected model runs are pooled to create a multi-model 
data of 1500 years for training and verification separately.   

• 20 PCs, 20-year time lags.  



Most Predictable Component of SAT 

Jia and DelSole, GRL, 2012  



Predictable Components of SAT over Land 



Correlation of SAT over Oceans with 
Predictable Components 

Ocean leads 3 years  
Ocean leads 3 yrs Ocean leads 1 yr 
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Predictable Components of Precipitation 



Predictable Components of Land Precipitation 



Correlation of SAT over Oceans with 
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Summary 

• Explicitly identified space-time structure of predictable 
temperature and precipitation over land on multi-year 
scales.  
 

• The leading 2 components of land temperature are 
predictable for 2-20 years depending on model. 
 

• Predictability of land temperature arises from the 
persistence of temperature over oceans and ENSO.  
 

• The leading 2 components of land precipitation are 
predictable for 2-4 years, and are correlated with ENSO.  

 
 





Sensitivity of Predictability to Models 



CanESM2 Canadian Centre for Climate Modelling and Analysis 

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research 
Organisation in collaboration with the Queensland 
Climate Change Centre of Excellence (Australia) 

IPSL-CM5A-LR Institut Pierre-Simon Laplace (France) 

IPSL-CM5A-MR Institut Pierre-Simon Laplace (France) 

HadGEM2-ES Met Office Hadley Centre (UK) 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 
(Germany) 

MRI-CGCM3 Meteorological Research Institute (Japan)  

CCSM4 National Center for Atmospheric Research (USA) 

NorESM1-M Norwegian Climate Centre   

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (USA) 



 



Drivers for Multi-year variability 

• Internal dynamics of climate system (e.g., air-sea 
interactions, slowly-varying climate components). 

    - unforced predictability 

 

• External forcing (e.g. CO2, volcano). 

   - forced predictability 
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